t-tests

(Student t-tests)

Learning outcome

- To interpret t-test result
- Types of t-test:
- One sample t-test
- 2 independent samples t-test / 2 samples ttest
- Paired-sample t-test
- Assumption (general)

1. Scale of measurement -

- the data should be at interval or ratio level of measurement

2. Random sampling

- The scores should be randomly sampled from the population of interest

3. Normality

- The scores should be normally distributed in the population
- Steps in solving Biometry :

1. Hypothesis
2. Test statistics
3. Value of α
4. Critical value, $t_{t} / F_{t} / \chi_{t}, \ldots .$.
5. Calculation
6. Conclusion

- $\mathrm{H}_{0}: \mu(\geq$ or $=$ or $\leq) \mathrm{A}$
- $H_{1}: \mu(<$ or \neq or $>) A$; $A=$ a number
- $\mathrm{H}_{0}: \mu_{1}(\geq$ or $=$ or $\leq) \mu_{2}$
- $\mathrm{H}_{1}: \mu_{1}(<$ or \neq or $>) \mu_{2}$

$$
t=\frac{\bar{X}-\mu}{s_{\bar{X}}} \quad t=\frac{\overline{y_{1}}-\overline{y_{2}}}{s_{\overline{y_{1}}-\overline{y_{2}}}}
$$

- $t=\mathrm{t}$ value (from calculation)
- $\bar{X}=$ Mean samples
- $\mu=$ mean population
- $s_{\bar{X}}=$ standard error of samples.

One sample test :

- Data from a single of participants
- Wish to know whether the mean of the

$$
t=\frac{\bar{X}-\mu}{(s / \sqrt{n})} \quad s_{\bar{x}}=\frac{s}{\sqrt{n}}
$$

population from which $\bar{X}=\frac{\Sigma X_{i}}{n}$ the sample is drawn is the same as the hypothesis mean (given μ)

$$
s^{2}=\frac{\sum X_{i}^{2}-\frac{\left(\sum X_{i}\right)^{2}}{n}}{n-1} \text { or }=\frac{\sum\left(X_{i}-\bar{X}\right)^{2}}{n-1}
$$

$$
s=\sqrt{s^{2}}
$$

Example 1

- A student exposed 25 crabs to air at $24.3^{\circ} \mathrm{C}$. The student would like to determine whether the mean body temperature of the crabs is the same as the ambient air temperature of $24.3^{\circ} \mathrm{C}$.
- The data of body temperature of crabs are display as below :

$$
\begin{array}{lllll}
25.8 & 26.2 & 24.3 & 25.5 & 23.9 \\
24.6 & 23.9 & 24.6 & 25.4 & 27.0 \\
26.1 & 24.5 & 23.3 & 26.3 & 24.8 \\
22.9 & 24.0 & 25.5 & 23.5 & 22.9 \\
25.1 & 27.3 & 28.1 & 24.8 & 25.4
\end{array}
$$

Solution 1

1. $\mathrm{H}_{0}: \mu=24.3^{\circ} \mathrm{C}$

$$
\mathrm{H}_{\mathrm{a}}: \mu \neq 24.3^{\circ} \mathrm{C}
$$

2. t-test (to compare the samples mean with $24.3^{\circ} \mathrm{C}$)
3. Value of $\alpha=0.05$
4. Critical value $=\mathrm{t}_{\mathrm{t}}=t_{\alpha(2), v}=t_{0.05(2),(25-1=24)}= \pm 2.064$
5. Calculation,

$$
\bar{X}=25.03 \quad s_{\bar{X}}=0.27
$$

$t=\frac{\bar{X}-\mu}{s_{\bar{X}}}=\frac{25.03-24.3}{0.27}=2.704$
6. $|t|\rangle t_{t}$, reject H_{0}

The sample of crabs body temperature is not $24.3^{\circ} \mathrm{C}$

SPSS output

One-Sample Test

	Test Value $=24.3$					
	t	df	Sig. (2-tailed)	Mean Difference	95\% Confidence Interval of the Difference	
					Lower	Upper
Crab temperature	2.713	24	. 012	72800	. 1741	1.2819

Reject H_{0} when $\mathrm{p}<\alpha$
 Reject H_{0} when $\mathrm{p}<0.05$

Example 2

- The data are weight changes of human, tabulated after administration of a drug proposed to result in weight loss. Each weight change (in kg) is the weight after minus the weight before drug administration.

$$
\begin{array}{llll}
0.2 & 0.4 & -0.1 & -0.8 \\
-0.5 & -0.7 & 0.0 & -1.2 \\
-1.3 & -1.6 & -0.6 & -1.1
\end{array}
$$

Solution 2

1. $\mathrm{H}_{0}: \mu \geq 0, \mathrm{H}_{\mathrm{a}}: \mu<0$
2. Test sta. : t test
3. $\alpha=0.05, n=12, v=11, \bar{X}=-0.61$
4. $t_{t}=-1.796$
5. $t=-3.389$
6. If $t \leq-\mathrm{t}_{\mathrm{t}}$, reject $\mathrm{H}_{0} . \rightarrow$ reject H_{0}

The drug proposed do cause weight loss in human.

SPSS output

One-Sample Test

	Test Value $=0$					
	t	df	Sig. (2-tailed)	Mean Difference	95\% Confidence Interval of the Difference	
					Lower	Upper
weightloss	-3.329	11	. 007	-. 60833	-1.0106	-. 2061

$p=0.007 / 2=0.0035(1$ tailed $)$
Tips: $\mathrm{p}<\alpha$; Reject H_{0}
$p=0.0035<\alpha=0.05$
\therefore Reject H_{0}

Two samples test (independent t test):

- Different participants have performed in each of the different conditions (when the participants in one condition are different from the participants in the other condition)
- Referred as a between-subjects design

$$
\begin{aligned}
& t=\frac{\overline{y_{1}}-\overline{y_{2}}}{s_{\overline{y_{1}}-\overline{y_{2}}}} \\
& s_{\overline{y_{1}}-\overline{y_{2}}}=\sqrt{s_{p}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)} \\
& s_{p}^{2}=\frac{v_{1} s_{1}^{2}+v_{2} s_{2}^{2}}{v_{1}+v_{2}} \\
& v=n-1 \\
& s^{2}=\frac{\sum Y^{2}-\left(\frac{\left(\sum Y\right)^{2}}{n}\right)}{n-1}
\end{aligned}
$$

Example 3

- Thirteen persons were divided at random into two groups, one group of six and group of seven
- The members of the first group were given one kind of drug (called "B"), and the members of the second group were given another kind of drug (called "G"). Blood is to be taken from each person and the time it takes the blood to clot is to recorded.
- Is blood from persons treated with drug B has the same mean clotting time as does blood from persons treated with drug G ?

Given drug B	Given drug G
8.8	9.9
8.4	9.0
7.9	11.1
8.7	9.6
9.1	8.7
9.6	10.4
	9.5

Solution 3

- $H_{0}: \mu_{B}=\mu_{G} ; H_{0}: \mu_{B} \neq \mu_{G}$
- t-test
- $\alpha=0.05, \quad \overline{X_{B}}=8.75 \mathrm{~min} \quad \overline{X_{G}}=9.74 \mathrm{~min}$

$$
s_{p}^{2}=\frac{S S_{B}+S S_{G}}{v_{B}+v_{G}}=0.5193 \mathrm{~min}^{2}
$$

$$
s_{\overline{X_{B}}-\overline{X_{G}}}=\sqrt{\frac{s_{p}^{2}}{n_{B}}+\frac{s_{p}^{2}}{n_{G}}}=0.40 \mathrm{~min}
$$

$$
\begin{aligned}
& t_{t}= t_{0.05(2), 11}= \pm 2.201 \\
& t=\frac{\overline{X_{B}}-\overline{X_{G}}}{s_{\overline{X_{B}}-\overline{X_{G}}}}=\frac{8.75-9.74}{0.4}=-2.475 \\
& \text { If } t<-t_{t,} \text { reject } H_{0}
\end{aligned}
$$

The two drug gave different result at 0.05 sig.
Drug B clotting faster than drug G

SPSS output

Independent Samples Test

		Levene's Testfor Equality of Variances		t-test for Equality of Means							
		F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95\% Confidence Interval of the Difference		
		Lower							Upper		
Effectiveness	Equal variances assumed		.747	. 406	-2.476	11	. 031	-. 99286	. 40091	-1.87526	-. 11045
	Equal variances not assumed			-2.545	10.701	. 028	-. 99286	. 39006	-1.85430	-. 13141	

$p=0.031$
(2-tailed as compared if drugs B \& have the same effectiveness)

Tips: $\mathrm{p}<\mathrm{a}$; Reject H_{0}

$$
p=0.031<\alpha=0.05
$$

\therefore Reject H_{0}

Example 4

- The data are heights of plants, each grown with one of two different fertilizers

Present fertilizer Never fertilizer

48.2	54.8
54.6	59.8
58.3	58.0
47.8	61.3
51.4	53.2
52.0	55.6
49.1	57.4
49.9	52.3
52.6	
55.2	

Solution 4

- $H_{0}: \mu_{1} \geq \mu_{2}$

$$
\mathrm{H}_{0}: \mu_{1}<\mu_{2}
$$

- t-test
- $\alpha=0.05$

$$
\begin{aligned}
& \overline{X_{1}}=51.91 \mathrm{~cm} ; \quad \overline{X_{2}}=56.55 \mathrm{~cm} \\
& s_{p}^{2}=\frac{S S_{1}+S S_{2}}{v_{1}+v_{2}}=10.71 \mathrm{~cm}^{2} \\
& s_{\overline{X_{1}}-\overline{X_{2}}}=\sqrt{\frac{s_{p}^{2}}{n_{1}}+\frac{s_{p}^{2}}{n_{2}}=1.55 \mathrm{~cm}} \\
& t_{t}=t_{0.05(1), 16}=-1.746 \\
& t=\frac{\overline{X_{1}}-\overline{X_{2}}}{s_{\overline{X_{1}}-\overline{X_{2}}}}=-2.99
\end{aligned}
$$

- If $\mathrm{t}<\mathrm{t}$, reject H_{0}
- \therefore newer fertilizer is much better than present fertilizer at $\alpha=0.05$.

Paired-sample t-test :

- Also known as repeated measures t-test / dependent-samples
- Only have data from one group of participants
- Referred as within-subject design
- To determine whether the difference between means for the two sets of scores is the same or different
- Additional assumption:
- Normality of population difference scores
- The difference between the scores for each participant should be normally distributed
- Providing the samples size is not too small (30+), violations of this assumption are of little concern.

$$
\begin{aligned}
& \bar{d}=\frac{\Sigma d}{n} \\
& s_{d}^{2}=\frac{\Sigma d^{2}-\left[\frac{(\Sigma d)^{2}}{n}\right]}{n-1} \\
& s_{\bar{d}}=\sqrt{\frac{s_{d}^{2}}{n}}
\end{aligned}
$$

Example 5

- A student wish to test the null hypothesis that the left foreleg and left hind leg lengths of deer are equal :

Deer (j)	Hindleg length (cm) $\left(\mathrm{X}_{1 \mathrm{j}}\right)$	foreleg length (cm) $\left(\mathrm{X}_{2 \mathrm{j}}\right)$	Difference (cm) $\left(\mathrm{d}_{\mathrm{j}}=\mathrm{X}_{1 j}-\mathrm{X}_{2 \mathrm{j}}\right)$
1	142	138	4
2	140	136	4
3	144	147	-3
4	144	139	5
5	142	143	-1
6	146	141	5
7	149	143	6
8	150	145	5
9	142	136	6
10	148	146	2

Solution 5

- $H_{0}: \mu_{d}=0 ; H_{a}: \mu_{d} \neq 0$

$$
\bar{d}=3.3 \mathrm{~cm}
$$

- Paired t-test
- $\alpha=0.05 ; n=10 ; \quad v=9 ; \quad s_{d}^{2}=9.344 \mathrm{~cm}^{2}$;

$$
\begin{aligned}
& s_{\bar{d}}=0.97 \mathrm{~cm} \\
& t=\frac{\bar{d}}{s_{\bar{d}}}=\frac{3.3}{0.97}=3.402
\end{aligned}
$$

$$
t_{0.05(2), 9}=2.262
$$

SPSS output

Paired Samples Test

Pair $1 \quad$| Hindleg_length - |
| :--- |
| foreleg_length |

Paired Differences	Mean		3.30000
	Std. Deviation		3.05687
	Std. Error Mean		. 96667
	95\% Confidence Interval of the Difference	Lower	1.11325
		Upper	5.48675
t			3.414
df			9
Sig. (2-tailed)			. 008

$p=0.08$
Tips: $\mathrm{p}<\alpha$; Reject H_{0}
$p=0.008<\alpha=0.05$
\therefore Reject H_{0}

