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Scope of study

AIM: To improve inferences for a model for ob-
servational maxima data.

Idea: Exploit the extra information of the trend
of extreme from the numerical climate model, i.e
global climate model (GCM) and a linked re-
gional climate model (RCM).

Data structure

•Annual maximum temperature 25km gridded
observations, Xt from year (t), 1959 to 2008 at
site s = 1, . . . , hr in region r = 1, . . . , 5.

•Simulated annual temperature maxima, Y (j)
t

at year, (t) 1949 to 2099 from different
members of an ensemble, j = 1, . . . , 11 using a
single RCM with the same fine 25 km grid
simulations.

•Simulated annual temperature maxima, Z(j)
t at

year, (t) 1949 to 2099 from different members
of an ensemble, j = 1, . . . , 17 using a GCM
with a grid of 300km.

•Observed global mean temperature, g(o)
X,t.

•The global annual mean temperature with
respect to year 2000, g(j)

M,t from jth GCM
ensemble members.

• Both RCM and GCM models were driven
under the A1B Special Report on Emission
Scenarios (SRES) from year 2000 to 2099.
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Figure 1: The data structure.

Model formulation

We fit a generalized extreme value distribution
(GEV) at each site as follows:

Xt ∼ GEV (θX,t) ,
Y

(j)
t ∼ GEV

(
θ

(j)
Y,t

)
Z

(j)
t ∼ GEV

(
θ

(j)
Z,t

)
where:
θX,t =

(
µX,t = αX + βX,tg

(o)
X,t, σX,t, ξX

)
θ

(j)
Y,t =

(
µ

(j)
Y,t = α

(j)
Y + β

(j)
Y,tg

(j)
M,t, σ

(j)
Y,t, ξ

(j)
Y

)
θ

(j)
Z,t =

(
µ

(j)
Z,t = α

(j)
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(j)
Z,tg
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M,t, σ

(j)
Z,t, ξ

(j)
Z

)

By pooling all these data
(
X, Y (j), Z(j)) in one

model fit leads to a complex structure with 92
number of parameters.

Strategy

Explore possible link between the parameters,
θX,t,θ

(j)
Y,t,θ

(j)
Z,t.

• to reduce the variance of the parameters from
the GEV fit of the observed data

• to reduce model complexity

The proposed model: link between
observations, RCM and GCM data

The link between parameters of θX,t,θ
(j)
Y,t,θ

(j)
Z,t:

βX,(r,s) = 1
11

11∑
j=1

β
(j)
Y,(r,s), β

(j)
Y,(r,s) = κβ0+κβ1β

(j)
Z,(r,s)

σX,(r,s) = 1
11

11∑
j=1

σ
(j)
Y,(r,s), σ

(j)
Y,(r,s) = κσ0+κσ1σ

(j)
Z,(r,s)

ξ
(j)
Y,(r,s) = κξ0 + κξ1ξ

(j)
Z,(r,s)

We found both the trend parameter and the scale
parameter of X are common to Y parameters so
we can link these parameters and simplify our
proposed model.

Bayesian inference

The remaining parameters to estimate are as fol-
lows:

θ∗∗X =
{
αX,(r,s), ξX,(r,s), s = 1, . . . , hr

}
θY Z = {κβ0, κβ1, κσ0, κσ1, κξ0, κξ1} .

MCMC with Metropolis Hastings algorithm im-
plemented as an alternative to the maximum like-
lihood and to produce uncertainty in the clima-
tological data.

Conclusions

•The inference of the trend parameter of the observed temperature maxima are more efficient by pooling
all the information of (X, Y (j), Z(j)) instead of using observed temperature maxima data only.

•We have obtained an efficient trend estimate of the observed extreme temperature by also considering
the uncertainty of the climatological model changes.
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Results

The summary of the trend parameter estimates
of the observed maxima temperature and the cor-
responding 95% confidence intervals/credible in-
tervals using the maximum likelihood and the
Bayesian inferences.
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(b)

Figure 2: The comparisons of the trend parame-
ter estimates by (a) the maximum likelihood using
X data only and (b) the Bayesian inference using
(X, Y (j), Z(j)). From top to bottom (a); the lower bound
of the 95% confidence intervals, the trend parameter
estimates by MLE and the upper bound of the 95%
confidence intervals. From top to bottom of (b): the
lower bound of the 95% credible intervals, the mean
sampling distributions of trend parameter estimates
by MCMC and the upper bound of the 95% credible
intervals.

Region 3 Lower bound Estimate Upper bound
95% CI 95% CI

MLE -0.506 1.311 3.129
MCMC 0.797 0.802 0.806
Region 5 Lower bound Estimate Upper bound

95% CI 95% CI
MLE -0.237 0.868 1.973

MCMC 0.811 0.816 0.819

Table 1: The average of trend parameter estimates
of the observed temperature maxima over the re-
gion and the corresponding of 95% confidence inter-
vals/credible intervals using two different methods;
maximum likelihood and the Bayesian inferences.


