EXTERNAL BEAM RADIATION THERAPY (EBRT)

Muhammad Nur Rashidi Rosli Pusat Persediaan Sains dan Teknologi Universiti Malaysia Sabah

INTRODUCTION

• EBRT: Type of radiation therapy that delivers the radiation beams from outside of the body to the target (tumor) in the body.

SIEMENS PRIMUS Linear Accelerator

SIEMENS MEVATRON Linear Accelerator

TYPE OF RADIATION THERAPY TREATMENT

- Curative radiation treatment
- To get rid of cancer cells.

Radical

Adjuvant

Palliative

- Radiation therapy given after the primary treatment
- To help decrease the risk of the cancer recurring
- May include chemotherapy, radiation therapy, hormone therapy, targeted therapy, or biological therapy.
- Not to cure the cancer
- To relieve cancer symptoms
- To improve quality of life
- Can reduce size of the tumour.

TECHNIQUE IN RADIOTHERAPY

1. Source-Skin Distance (SSD) Technique

2. Source-Axis Distance (SAD) Technique

1. SSD Technique

- The patient's skin surface is placed at the isocentric axis (isocenter) of the LINAC.
- The distance from patient's skin to the source is equal to the SAD of the machine.
- Separation: < 20 cm
- When SAD of the unit = 100cm, SSD = 100cm.

SSD = The distance from the source to skin surface. SAD = The distance from the source to isocenter. It also known as source-axis distance (SAD).

2. SAD Technique (Isocentric)

- The isocentric axis of LINAC is placed at a point within patient body.
- The SSD will be less than the SAD.
- In case: separation > 20 cm
- A **PIN** is a reference point on the skin surface that related to the position of the isocenter.
- PIN: 10 cm & SAD = 100cm
- SSD = (100-10)cm = 90 cm

Figure 11.2 Figure of isocentric mounting.

Case 1: Head and neck

Patient RN: B 498998					
Date: 28/03/2013		Diagnosis: NASOPHARAGEAL CANCER T ₃ N _{3b} M ₀			
Field Size No.	1	2	3	4	
Name of Field Size	Right Lateral Face	Left Lateral Face	Anterior Neck	Posterior Neck	
Field Size	11 (y) X 9.5(x)	11 (y) X 9.5(x)	13.3(y) X 21(x)	13.3(y) X 21(x)	
Gantry Angle	270°	90°	0°	180°	
SSD/ SAD	SSD: 100 cm	SSD: 100 cm	SSD: 100 cm	SSD: 100 cm	
Collimator Angle	0°	0°	0°	0°	

Treatment Procedures

• Prepare set-up:

 Instruct patient to lay supine with backsupport SR1 + SR2 and hands on side

Alignment the vertical and horizontal line according to BDS markers.

First beam projection (Right lateral face). Turn gantry 270⁰.

Second beam projection (Left lateral face). Turn gantry 90⁰.

• Third beam projection (Anterior neck). Gantry at

Forth beam projection (Posterior neck). Gantry at 180°.

Case 2 : Breast

Patient RN: B511471					
Date : 15 APR 2013		Diagnosis: Right Breast Cancer, T ₂ N ₁ M ₀			
Purpose of treatment: Adjuvant-Post operative irradiation					
No. of Field Size	-	l	2		
Name of Field Size	Right Lateral Tangential		Right Medial Tangential		
Field Size	5.5(y) X 16(x)		5.5(y) X 16(x)		
Gantry angle	239		63 ⁰		
Collimator angle	90 ⁰		270 ⁰		
SAD/SSD	SAD				
Pinning	3.1cm				

Immobilization tools.

-use breastboard;

- Breastboard angle (θ°) : 2
- Hip support position : E
- Head position : 2
- Arm support : 40 °, high 1, lateral 'A'

Breastboard

Patient positioning

Landmark (unit :cm)

Procedure

- Prepare set up.
- Confirmation of patient ID
- Patient positioning
- Irradiation

239° (Rt Lat. Tangential)

63°(Rt Med. Tangential)

Case 3: Cervical Cancer

Patient RN: B 511033					
Date: 26/02/2013		Diagnosis: Cervical Cancer			
Field Size No.	1	2	3	4	
Name of Field Size	Anterior pelvis	Posterior pelvis	Right lateral pelvis	Left lateral pelvis	
Field Size	16(y) X 16(x)	16(y) X 16(x)	16(y) X 12(x)	16(y) X 12(x)	
Gantry Angle	0°	180°	270°	90°	
SSD/ SAD	SAD: 90.4 cm	SAD: 90.4 cm	SAD: 90.4 cm	SAD: 90.4 cm	
Collimator Angle	0	0	0	0	

Field: Anterior Pelvis

Field: Posterior Pelvis

Field: Right Lateral Pelvis

Case 4: Skin

Patient RN: B 013026					
Date: 11/03/2013		Diagnosis: Skin Cancer (R) shoulder arc			
Field Size No.	1	2	3	4	
Name of Field	Ant. Rt.	Post. Rt.			
Size	Shoulder	Shoulder			
Field Size	20 (y) X 9(x)	20 (y) X 9(x)			
Gantry Angle	0°	180°			
SSD/ SAD	SSD: 100 cm	SSD: 100 cm			
Collimator Angle	308.2°	51.8°			

Pt. Positioning and Immobilization Tools

- ✓ Patient supine
- ✓ HR 'A'
- ✓ SR '2' under Rt. Shoulder
- ✓ Rt. Hand Akimbo
- ✓ Wing board

Landmarks

↓ Wing board

Example of patient positioning for skin cancer

Beam Modification Devices

1. Wedges

- Solid triangular blocks of metal that are inserted into the head of the gantry to manipulate the radiation beam and accommodate for changes in contour and density.
- 15°, 30°, 45° and 60°

2. Tray and Lead Block

3. Bolus

- A solid, homogeneous, tissue-equivalent gel with a density of 1.03g/c.
- A tissue-equivalent material used to change the surface deposition of a radiation beam.
- Bolus is placed in contact with the skin to achieve one or both of the following: increase the surface dose and/or compensate for missing tissue.

Patient Immobilization/ Support Devices

4. Head and Shoulder Rest

- For patient comfortable and stability
- Both HR and SR are usually used together
- Different HR and SR with different thickness

5. Beam Direct Shell

- Made of thermoplastic shell
- Immobilization by preventing chin-drop and shoulder rotation
- The point of target is drawn and marked on the BDS positioning

6. Breast board

- Support and immobilize patients for breast carcinoma
- Has an array of hand and head support positions of bi-axial arm and wrist support system, round head cup
- Made of carbon fiber low attenuation
- The system can be adjusted according to patient comfort

Patient Care

- The continuum of care is essential in the treatment of cancer from diagnosis through to follow up.
- 2. Provide the highest possible standard of care for patients during treatment.
- ✓ Explain the treatment procedures and time taken to patient
- Remind patient to not apply anything on the treatment surface and avoid rubbing.
- ✓ After the treatment, patient is informed certain side effects they may experience.
- \checkmark Make sure to drink plenty of water.

Radiation Safety and Protection

CONCLUSION

- ✓ The newer 3-dimensional conformal radiation therapy (3D-CRT) and intensity modulated radiation (IMRT).
- ✓ It's highly likely that patients will have some side effects radiotherapy temporarily damages some of the healthy cells - cancerous ones.
- ✓ Prevents local recurrence of cancer the recurrence rate determines the success of radiotherapy treatment

References

- ✓ Cancer Treatment Guide. Retrieved from: <u>http://www.prostate-cancer.com/radiation/cancer-treatments/radiation-cancer-treatments.html</u>.
- ✓ Hermitage Medical Clinic, Patient Care. Retrieved from: <u>http://www.hermitageclinic.ie/services-specialities/clinical-</u> <u>departments/radiotherapy-department/patient-care/</u>.