COURSE INFORMATION

Faculty:	Faculty of Engineering	Page:	1 of 5	
Programme:	Chemical Engineering			
Course code:	KC32603	Acader	nic Session/Semester:	2021-2022/2
Course name:	Process Simulation and Integration	Pre/co and co	requisite (course name	
Credit hours:	3			

Course Synopsis	chemical processes and for the conceptual design of unit operations. In the last years, chemical process simulation has become of significant importance due to the evolution of computing tools, which have opened a wider spectrum of possibilities in the use of applications for process integration. The abovementioned application added to the need of performing calculations in a fast way in order to focus in the analysis of the obtained information and on other relevant aspects such as safety, green engineering, economic profitability, and many other factors that make the solutions of engineering more competitive. This course is divided into third parts. The first part is about fundamental of process simulation and application of process simulation will be applied in the complete chemical process. The third part is where the application of process integration will be applied in order to design complex chemical engineering process with specific aspects as mentioned above. This course implements active learning, cooperative learning as well as blended learning in all teaching and learning activities.						
Course Learning Outcomes (CLOs)	 At the end of this semester, students will be able to: Systematically analyze complex chemical engineering process design problems using the applicable chemical engineering process simulator. Design solutions for complex chemical engineering process design problems that able to improve process productivity and energy saving. Design solutions for complex chemical engineering process integration design problems that able to improve process productivity and energy saving. Design solutions for complex chemical engineering process integration design problems that able to improve process productivity and energy saving. Apply the applicable process simulation concept of Aspen HYSYS process simulator in designing individual chemical engineering unit operations as well as complete and complex chemical engineering process design problems. 						
Course Schedule	Thursday 14:00 – 16:00 (Makmal Umum 2, FKJ) Friday 8:00 – 10:00 (Makmal Umum 2, FKJ)						
Course lecturer	Name	Office	Contact no.	E-mail			
	Assoc. Prof. Ts. Dr. Mohd Kamaruddin bin Abd Hamid	A-11	0137790426	kamaruddinhamid@ums. edu.my			

Mapping of the Course Learning Outcomes (CLO) to the Programme Learning Outcomes (PLO), Teaching & Learning (T&L) methods and Assessment methods:

No.	Course Learning Outcomes	PLO	Taxonomies Level	T&L Methods	Assessment Methods
CLO 1	Systematically analyze complex chemical	PLO 2	C4 (analyze)	Active learning,	In-Classs
	engineering process design problems using			Cooperative	Exercises, Mid-
	the applicable chemical engineering			Learning, Blended	Term Test, Final
	process simulator.			Learning	Exam
CLO 2	Design solutions for complex chemical	PLO 3	C6 (design)	Active learning,	Quizzes,
	engineering process design problems that			Cooperative	Progress
	able to improve process productivity and			Learning, Blended	Reports, Project
	energy saving.			Learning	Report
CLO 3	Design solutions for complex chemical	PLO 3	C6 (design)	Active learning,	Quizzes,
	engineering process integration design			Cooperative	Progress

Faculty:	Faculty of Engineering	Page:	2 of 5	
Programme:	Chemical Engineering			
Course code:	KC32603	Academ	ic Session/Semester:	2021-2022/2
Course name:	Process Simulation and Integration	Pre/co i and cod	equisite (course name	
Credit hours:	3			

	problems that able to improve process productivity and energy saving.			Learning, Blended Learning	Reports, Project Report
CLO 4	Apply the applicable process simulation concept of Aspen HYSYS process simulator in designing individual chemical engineering unit operations as well as complete and complex chemical engineering process design problems.	PLO 5	C3 (apply)	Active learning, Cooperative Learning, Blended Learning	In-Class Exercises, Mid- Term Test, Final Exam

Details on Innovative T&L practices:

No.	Туре	Implementation
1.	Active learning	Conducted through in-class activities.
2.	Cooperative learning	Conducted through design projects. Students in a team of five will be given two design projects that require chemical engineering process design solutions involving the application of process simulator. Compliance to the design specifications need to be given in the form of written reports.
3.	Blended learning	Conducted through Learning Management System (LMS) of UMS SmartV3. All information as well as materials related to teaching and learning activities will be given prior to class through this system. Some for formative assessments will be also conducted using this system.

Weekly Schedule:

Week 1	Introduction
	Introduction to Process Design, Simulation and Integration
Week 2	Process Simulation Using Aspen HYSYS
	Part 1: Equation of state, pressure-related equipment, temperature-related equipment
	In-Class Exercise 1
Week 3	Process Simulation Using Aspen HYSYS
	Part 2: Reaction systems
	In-Class Exercise 2
Week 4	Process Simulation Using Aspen HYSYS
	Part 3: Separation systems
	In-Class Exercise 3
Week 5	Reaction Systems in Series
	Conversion-Equilibrium Reactions
Week 6	Separation Systems in Series
	Flash-Distillation Column, Distillation Columns Sequence
	In-Class Exercise 4
Week 7	Reaction-Separation Systems
	Reaction-Separation Systems
	In-Class Exercise 5
Week 8	Mid-Semester Break
Week 9	Chemical Engineering Process Design: Simulation Project 1
	Chemical Engineering Process Design

Faculty:	Faculty of Engineering	Page:	3 of 5	
Programme:	Chemical Engineering			
Course code:	KC32603	Academ	2021-2022/2	
Course name:	Process Simulation and Integration	Pre/co requisite (course name and code if applicable):		
Credit hours:	3		c, appcabic)i	

	Quiz 1
Week 10	Chemical Engineering Process Design
	Quiz 2
Week 11	Chemical Engineering Process Design
	Quiz 3
Week 12	Chemical Engineering Process Integration Design: Simulation Project 2
	Chemical Engineering Process Integration Design
	Quiz 4
Week 13	Chemical Engineering Process Integration Design
	Quiz 5
Week 14	Chemical Engineering Process Integration Design

Transferable skills (generic skills learned in course of study which can be useful and utilised in other settings):

Team working Life-long learning Communication

Student learning time (SLT) details:

Studen	t	Teaching and Learning Activities										
Learnin Time (Sl	ig _T)	G (uided Learning Guided (Face to Face) (On		ided Learning (Online)		Learning Guided Independe Learning nt Learning nline) Non-Face Non-Face to Face to face		TOTAL SLT			
CLO		L	Т	Р	0	L	Т	Р	0			
CLO 1		3h			6h				6h	3h	5h	23h
CLO 2					6h					3h	10h	19h
CLO 3					6h					3h	10h	19h
CLO 4					8h				26h	8h	5h	47h
Total SI	Т.	3h			26h				32h	17h	30h	108h
	Con	tinuous	Assess	ment		CL	0			Percentage		Total SLT
1	Qui	zzes				CLC CLC)2	10				4h
2	In-C	Class Ex	ercises			CLC CLC) 1) 4	15				2h
3	Mid-Term Test CLO 1 CLO 4) 1) 4	15				3h	
4	Proj	ject Rep	ort 1			CLC) 2			10		As in CLO 2
5	Proj	ject Rep	ort 2			CLC) 3	10				As in CLO 3
	F	-inal Ass	sessmei	nt						Percentage		Total SLT
1 Final Examination CLO 1 CLO 4) 1) 4	40			3h			
Grand Total								100		120h		

Faculty:	Faculty of Engineering	Page:	4 of 5	
Programme:	Chemical Engineering			
Course code:	KC32603	Academ	2021-2022/2	
Course name:	Process Simulation and Integration	Pre/co		
Credit hours:	3		c, appcab.c).	

Course Learning Outcomes (CLOs), Programme Learning Outcomes (PLOs) and Complex Engineering Problems (WP) & Knowledge Profiles (WK)

Assessments	CLO	Domain Level	PLO	Complex Problems Characteristics	Deliverables
Quizzes	CLO 2	C6	PLO 3	WK3, WK4, WK5, WK6	
	CLO 3			WP1, WP4	
In-Class	CLO 1	C4	PLO 2	WK3, WK4, WK5, WK6	 Solution planning
Exercises	CLO 4	C3	PLO 5	WP1, WP4	 Simulation results
Simulation	CLO 2	C6	PLO 3	WK3, WK4, WK5, WK6	 Progress reports
Project 1				WP1, WP3, WP4, WP7	 Final report
Simulation	CLO 3	C6	PLO 3	WK3, WK4, WK5, WK6	 Progress reports
Project 2				WP1, WP3, WP4, WP7	 Final report
Mid-Term Test	CLO 1	C4	PLO 2	WK3, WK4, WK5, WK6	
	CLO 4	C3	PLO 5	WP1, WP4	
Final Exam	CLO 1	C4	PLO 2	WK3, WK4, WK5, WK6	
	CLO 4	C3	PLO 5	WP1, WP4	

Special requirement to deliver the course:

Computer lab with Aspen HYSYS

Learning resources:

Main references

 Ivan Dario Gil Chaves, Javier Ricardo Guevara Lopez, Jose Luis Garcia Zapata, Alexander Leguizamon Robayo, & Gerardo Rodriquez Nino (2016), *Process Analysis and Simulation in Chemical Engineering*. Springer. ISBN: 978-3-319-14812-0.
 Juma Haydary (2019), Chemical Process Design and Simulation: Aspen Plus and Aspen HYSYS Applications. AIChE-Wiley. ISBN: 978-1-119-31143-0.

Nayef Ghazem (2018), *Modeling and Simulation of Chemical Process Systems*. Taylor & Francis. ISBN: 978-0-203-70508-7.

Dominic Chwan Yee Foo (Eds.) (2017), Chemical Engineering Process Simulation. Elsevier. ISBN: 978-0-128-03782-9.

Academic honesty and plagiarism:

It is contrary to justice, academic integrity, and to the spirit of intellectual inquiry to submit another's statements or ideas as one's own work. To do so is plagiarism or cheating, offenses punishable under the University's disciplinary system. Because these offenses undercut the distinctive moral and intellectual character of the University, we take them very seriously.

Proper acknowledgment of another's ideas, whether by direct quotation or paraphrase, is expected. In particular, if any written or electronic source is consulted and material is used from that source, directly or indirectly, the source should be identified by author, title, and page number, or by website and date accessed. Any doubts about what constitutes "use" should be addressed to the instructor.

Copying of work (texts, simulation results etc.) from other students/teams or from other sources is not allowed. Existing texts should be reformulated with your own words used to explain what you have read. It is not acceptable to retype existing texts and just acknowledge the source as a reference. Be warned: students who submit copied work will obtain a mark of **zero** for the assignment and disciplinary steps may be taken by the Faculty. It is also unacceptable to do somebody else's work, to lend your work to them or to make your work available to them to copy.

Other additional information:

Faculty:	Faculty of Engineering	Page:	5 of 5	
Programme:	Chemical Engineering			
Course code:	KC32603	Academic Session/Semester:		2021-2022/2
Course name:	Process Simulation and Integration	Pre/co requisite (course name and code, if applicable):		
Credit hours:	3			

All teaching and learning activities are team tasks unless explicitly indicated as individual tasks. During those activities, all students are required to actively participate. Peer rating will be implemented at the end of each activity especially for design project to measure students' participation.

All students are required to attend the class unless given a notice in advanced. Attendance will be taken in the first five minutes before the class started either face-to-face or online.

All given assignments must be submitted through UMS Learning Management System (LMS) SmartV3 before the deadline. The marks of the late submission will be deducted. It is advisable for students to consult the instructor in the case of late submission.

Disclaimer:

All teaching and learning materials associated with this course are for personal use only. The materials are intended for educational purposes only. Reproduction of the materials in any form for any purposes other than what it is intended for is prohibited.

While every effort has been made to ensure the accuracy of the information supplied herein, Universiti Malaysia Sabah cannot be held responsible for any errors or omissions.