KC32603 Process Simulation and Integration

In-Class Exercise 2 (CLO4 - PLO5; WP1, WP4; WK3, WK4, WK5 WK6)

Situation 1:

Feed 1:

Comp: Methane
Pres: 1 atm
Flowrate: $100 \mathrm{kmol} / \mathrm{h}$

Temp: $25^{\circ} \mathrm{C}$
EOS: Peng-Robinson

Temp: $25^{\circ} \mathrm{C}$
EOS: Peng-Robinson

Pres: 1 atm
Flowrate: $100 \mathrm{kmol} / \mathrm{h}$

$$
\begin{aligned}
& \mathrm{CH}_{4}+\frac{1}{2} \mathrm{O}_{2} \xrightarrow{40 \%} \mathrm{CO}+2 \mathrm{H}_{2} \\
& \mathrm{CH}_{4}+\mathrm{O}_{2} \xrightarrow{60 \%} \mathrm{CO}_{2}+2 \mathrm{H}_{2}
\end{aligned}
$$

Simulate the reactions above. Take note of all output products. By doing some analysis, evaluate how that hydrogen product can be increased?

Situation 2:

Feed 3:

Comp: Water
Pres: 1 atm
Flowrate: $100 \mathrm{kmol} / \mathrm{h}$

Temp: $150^{\circ} \mathrm{C}$
EOS: Peng-Robinson

$$
\mathrm{CO}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{CO}_{2}+\mathrm{H}_{2}
$$

In hydrogen production, CO composition will be maintained as low as possible using Water-Gas-Shift (WGS) reaction. Simulate this WGS reaction using the simulated design in Situation 1. Evaluate how the CO can be decreased?

