KC32603 Process Simulation and Integration

In-Class Exercise 5 (CLO1 – PLO2; WP1, WP4; WK3, WK4, WK5 WK6)

Add a Material Stream with the following data:

on this page	Select
Name	Feed
Temperature	25°C
Pressure	1 atm
Flowrate	1000 kgmole/h
Component	Mole Fraction
n-C ₄	0.30
n-C ₉	0.20
n-C ₁₁	0.15
n-C ₁₃	0.35

- 1. Simulate the Feed. What is the phase of this feed?
- 2. Briefly explain how to change the phase into a vapour phase? What is the boiling point of this feed?
- 3. Briefly explain what is a direct sequence? Draw the direct sequence for this Feed by showing corresponding component at all product streams.
- 4. Briefly explain what is an indirect sequence? Draw the indirect sequence for this Feed by showing corresponding component at all product streams.
- 5. Simulate the direct sequence in (3) using Short-Cut Distillation Column with product purities of 95 % and 99 %. What is the total energy required for both product purities? Justify the differences?
- 6. Simulate the indirect sequence in (4) using Short-Cut Distillation Column with product purities of 95 % and 99 %. What is the total energy required for both product purities?
- 7. Draw driving force curves for this Feed. Synthesis and draw a new sequence based on the driving force curves by showing corresponding component at all product streams.
- 8. Simulate the new sequence in (7) using Short-Cut Distillation Column with product purities of 95 % and 99 %. What is the total energy required for both product purities?
- 9. By comparing total energy requirements for simulations in (5), (6) and (8) for product purities of 99 %, identify which sequence has the lowest energy requirement?