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Abstract: Motivated by the fact that the quaternion Fourier transform is a powerful tool in quater-
nion signal analysis, here, we study the quaternion quadratic-phase Fourier transform, which is a
generalized version of the quaternion Fourier transform. We first give a definition of the quaternion
quadratic-phase Fourier transform. We derive in detail some essential properties related to this
generalized transformation. We explore how the quaternion quadratic-phase Fourier transform is
related to the quaternion Fourier transform. It is shown that this relation allows us to obtain several
versions of uncertainty principles concerning the quaternion quadratic-phase Fourier transform.
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1. Introduction

As is known, the quadratic-phase Fourier transform [1–6] is considered a useful tool in
signal processing and has drawn great attention from some scholars in recent years. It can
also be looked at as a natural generalization of several popular transformations, such as the
Fourier transformation [7,8], the linear canonical transform (LCT) and the fractional Fourier
transform (FrFT). On the other hand, some researchers have interest in the construction
of various transformations using the quadratic-phase Fourier transform (see, e.g., [9–11]).
They have also investigated the main properties of constructed transformations such as
spatial shifts, multiplication, convolution and inequalities. Recently, in [12], the authors
studied the Gabor quaternion quadratic-phase Fourier transform. It was shown that several
properties of the proposed transformation are obtained using a direct connection between
the definition of the Gabor quaternion quadratic-phase Fourier transform and the definition
of the quaternion quadratic-phase Fourier transform. Therefore, it is very meaningful to
study the quaternion quadratic-phase Fourier transform and investigate its properties
in detail.

In the current research, we introduce a definition of the quaternion quadratic-phase
Fourier transform, which can be thought as a non-trivial generalization of the quater-
nion Fourier transform, the quaternion linear canonical transform (QLCT) [13–17], the
quaternion fractional Fourier transform (QFrFT) and the other generalized transformations.
It is shown that the direct interaction between the quaternion quadratic-phase Fourier
transform and the quaternion Fourier transform permits us to build some properties and
novel inequalities associated with the quaternion quadratic-phase Fourier transform. We
emphasize that our present work is different from the proposed method in [18], as in [18],
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the linear canonical wavelet transform was proposed, while in the present study, a new
quaternion quadratic-phase Fourier transform is proposed.

This paper is arranged as follows. In Section 2, we introduce some preliminaries
related to quaternion algebra which will be useful. The definition of the quaternion Fourier
transform (QFT) and its uncertainty principle are included in Section 3. Section 4 is devoted
to introducing the quaternion quadratic-phase Fourier transform (QQPFT) and its connec-
tion to the quaternion Fourier transform. Section 5 is devoted to the derivation of several
uncertainty principles associated with the QQPFT. Lastly, Section 6 gives our conclusions.

2. Preliminary Notations

In this part, we mainly recall some basic facts on quaternion algebra and properties,
which will be needed throughout this work. The quaternion algebra H over a real number
R is an extension of the complex numbers in higher dimensions. An element r ∈ H is of
the form [19]

H = {r = r0 + ir1 + jr2 + kr3 | r0, r1, r2, r3 ∈ R}, (1)

for which the three imaginary quaternion units i, j and k obey the following defining
relations:

ij = −ji = k, jk = −kj = i, ki = −ik = j, i2 = j2 = k2 = ijk = −1. (2)

For simplicity, any r ∈ H may be written as

r = r0 + r = Sc(r) + V(r). (3)

In this case, r0 = Sc(r) and V(r) = ir1 + jr2 + kr3 denote the scalar and vector parts,
respectively.

Due to Equation (2), the multiplication of quaternions q and r is expressed as

qr = q0r0 − q · r + q0q + r0q + q× r, (4)

where

q · r = q1r1 + q2r2 + q3r3,

q× r = i (q2r3 − q3r2) + j (q3r1 − q1r3) + k (q1r2 − q2r1),

and q + r = q0r0 + iq1r1 + jq2r2 + kq3r3.
The conjugate of a quaternion r denoted by r̄ is given by

r̄ = r0 − ir1 − jr2 − kr3, (5)

with the properties
qr = r̄q̄, r + q = r̄ + q̄, ¯̄r = r.

For every r ∈ H, the following are satisfied:

Sc(r) =
1
2
(r + r̄) and V(r) =

1
2
(r− r̄). (6)

The module (norm) of the quaternion q can be defined as

|r| =
√

rr̄ =
√

r2
0 + r2

1 + r2
2 + r2

3. (7)

One can easily verify that for every q, r, p ∈ H , the following holds:

Sc(q) ≤ |q|, |q| = |V(q)| ≤ |q|, Sc(qpr) = Sc(prq) = Sc(qpr). (8)



Mathematics 2023, 11, 1235 3 of 15

It is straightforward to see that

|qr| = |q||r|, (9)

and

|q + r| ≤ |q|+ |r|. (10)

The inverse of a non-zero quaternion r ∈ H is expressed as

r−1 =
r
|r|2 . (11)

This will lead to the following:

Lemma 1. Let q be a nonzero quaternion. For every r ∈ H, one has∣∣∣∣ rq
∣∣∣∣ = |r||q| . (12)

Proof. Since |q̄| = |q|, under Equations (9) and (11), we have∣∣∣∣ rq
∣∣∣∣ = ∣∣∣∣r q

|q|2

∣∣∣∣ = 1
|q|2 |rq| = |r||q| ,

which gives the required result.

Furthermore, one may consider the inner product for two quaternion functions f and
g as follows:

( f , g) =
∫
R2

f (t)g(t) dt, dt = dt1dt2. (13)

with the scalar product
〈 f , g〉 = Sc( f , g). (14)

Set

‖ f ‖L2(R2;H) =

( ∫
R2
| f (t)|2 dt

)1/2

. (15)

3. Quaternion Fourier Transform

This part begins by defining the quaternion Fourier transform (QFT). Since the quater-
nion product is not always commutative in general, there are three different kinds of QFTs:
the so-called two-sided QFT, right-sided QFT and left-sided QFT. We focus on the introduc-
tion of the two-sided quaternion Fourier transform (or the QFT for short). We collect its
important properties, including the inversion formula and uncertainty principles, which
will be needed later. More details of the QFT properties, including its uncertainty principle,
are referred to in [20–25]:

Definition 1. Let f ∈ L1(R2;H)∩ L2(R2;H). The definition of the two-sided quaternion Fourier
transform of f is described through

FH{ f }(ξ) = 1
2π

∫
R2

e−iξ1t1 f (t)e−jξ2t2 dt, (16)

where ξ, t ∈ R2.

The reconstruction formula of the QFT defined above is computed by using the
following definition:
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Definition 2. Let f ∈ L1(R2;H) and FH{ f } ∈ L1(R2;H). The inverse quaternion Fourier
transform for f over R2 is evaluated as follows:

f (t) =
1

2π

∫
R2

eiξ1t1FH{ f }(ξ) ejξ2t2 dξ. (17)

We can easily verify the following result:

Lemma 2. If f (t), t f (t) ∈ L2(R2;H), then ∂2

∂ω1∂ξ2
FH{ f }(ξ) exists and is given by

∂2

∂ξ1∂ξ2
FH{ f }(ξ) = iF{ fτ(t)}(ξ)j, (18)

where fτ(t) = t1 f (t)t2.

Proof. Due to the relation in Equation (16), we have

∂

∂ξ1
FH{ f }(ξ) = ∂

∂ξ1

∫
R2

e−iξ1t1 f (t)e−jξ2t2 dt

=
∫
R2
−it1e−iξ1t1 f (t)e−jξ2t2 dt

= −i
∫
R2

e−iξ1t1 t1 f (t)e−jξ2t2 dt.

Hence, we have

∂2

∂ξ1∂ξ2
FH{ f }(ξ) = ∂

∂ξ2

[
∂

∂ξ1
FH{ f }(ξ)

]
=

∂

∂ξ2

[
−i
∫
R2

e−iω1t1 t1 f (t)e−jξ2t2 dt
]

= −i
∫
R2

e−iξ1t1 t1 f (t)(−j)t2e−jξ2t2 dt

= −i
∫
R2

e−iξ1t1 t1 f (t)t2e−jξ2t2 dt(−j)

= −iF{ fτ(t)}(ξ)(−j).

The proof is complete.

Useful results for the QFT defined by Equation (16) include the inequalities demon-
strated by the following formulas:

Theorem 1 (Heisenberg’s inequality for QFT [26]). For all f ∈ L2(R2;H) with FH{ f } ∈
L2(R2;H), the following inequality holds:

∫
R2

t2
k | f (t)|

2 dt
∫
R2

ξ2
k
∣∣FH{ f }(ξ)

∣∣2 dξ ≥ 1
4

( ∫
R2
| f (t)|2 dt

)2

, k = 1, 2. (19)

Theorem 2 (QFT Sharp Hausdorff–Young Inequality [20]). Let 1 ≤ r ≤ 2 and s be such that
1
r +

1
s = 1. Then, for any f ∈ Lr(R2;H), the following inequality holds:

‖FH{ f }‖Ls(R2;H) ≤ C2
r ‖ f ‖Lr(R2;H), (20)

where

Cr =
(
r1/rs−1/s)1/2. (21)
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Theorem 3 (QFT Pitt’s inequality [24]). Let f ∈ S(R2;H) and 0 ≤ α < 2. Then, we have∫
R2
|ξ|−α|FH{ f }(ξ)|2 dξ ≤ M(α)

∫
R2
|t|α| f (t)|2 dt, (22)

where

M(α) = πα

[
Γ
( 2−α

4
)

Γ
( 2+α

4
)]2

. (23)

Here, S(R2;H) is the quaternion Schwartz space and Γ(·) is the well-known gamma function.

4. Quaternion Quadratic-Phase Fourier Transform (QQPFT)

The main purpose of this section is to derive the useful properties of the quaternion
quadratic-phase Fourier transform (QQPFT). We also study its fundamental relationship
to the quaternion Fourier transform and adopt it to provide the proof of the uncertainty
principles related to the quaternion quadratic-phase Fourier transform.

4.1. QQPFT Definitions

Let us start by introducing the three types of definitions for the quaternion quadratic-
phase Fourier transform:

Definition 3. Let Q1 = (A1, B1, C1, D1) and Q2 = (A2, B2, C2, D2) be the given parameter
sets. The two-sided quaternion quadratic-phase Fourier transform of a signal f ∈ L1(R2;H) ∩
L2(R2;H) such that B1 6= 0 and B2 6= 0 is defined through

QQ1,Q2{ f }(ξ) = 1√
(2π)2

∫
R2

KQ1(t1, ξ1) f (t)KQ2(t2, ξ2) dt. (24)

Definition 4. Let Q1 = (A1, B1, C1, D1) and Q2 = (A2, B2, C2, D2) be the given parameter
sets. The right-sided quaternion quadratic-phase Fourier transform of a signal f ∈ L1(R2;H) ∩
L2(R2;H) such that B1 6= 0 and B2 6= 0 is defined through

QR
Q1,Q2

{ f }(ξ) = 1
2π

∫
R2

f (t)KQ1(t1, ξ1)KQ2(t2, ξ2) dt. (25)

Definition 5. Let Q1 = (A1, B1, C1, D1) and Q2 = (A2, B2, C2, D2) be the given parameter sets.
The left-sided quaternion quadratic-phase Fourier transform of a signal f ∈ L1(R2;H)∩ L2(R2;H)
such that B1 6= 0 and B2 6= 0 is defined through

QL
Q1,Q2

{ f }(ξ) = 1
2π

∫
R2

KQ1(t1, ξ1)KQ2(t2, ξ2) f (t) dt. (26)

Here, we have

KQ1(t1, ξ1) =
1√
2π

e−i
(

A1t2
1+B1t1ξ1+C1ξ2

1+D1t1+E1ξ1

)
, (27)

and

KQ2(t2, ξ2) =
1√
2π

e−j
(

A2t2
2+B2t2ξ2+C2ξ2

2+D2t2+E2ξ2

)
. (28)

Our main work is solely focused on the two-sided quaternion quadratic-phase Fourier
transform (QQPFT).
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Some notable special cases include the following:

• When Q1 = (0, 1, 0, 0, 0) and Q2 = (0, 1, 0, 0, 0), the above definition boils down to the
QFT definition in Equation (16).

• Fortheparametersets Q1 = (cot θ
2 ,− csc θ, cot θ

2 , 0, 0) and Q2 = (cot ϑ
2 ,− csc ϑ, cot ϑ

2 , 0, 0),
multiplying the left side of Equation (24) by

√
1− i cot θ and the right side of Equation

(24) by
√

1− j cot θ reduces to the quaternion fractional Fourier transform.

Some essential properties of the QQPFT are shown in the following theorem:

Theorem 4. If the quaternion function f belongs to L1(R2;H), then QQ1,Q2{ f } is continuous
on R2.

Proof. Applying the QQPFT definition (Equation (24)) shows that for every h ∈ R2,
we have∣∣QQ1,Q2{ f }(ξ + h)−QQ1,Q2{ f }(ξ)

∣∣
=

1
2π

∫
R2

e−i
(

A1t2
1+B1t1(ξ1+h1)+C1(ξ1+h1)

2+D1t1+E1(ξ1+h1)
)

f (t)

× e−j
(

A2t2
2+B2t2(ξ2+h2)+C2(ξ2+h2)

2+D2t2+E2(ξ2+h2)
)

dt

− 1
2π

∫
R2

e−i
(

A1t2
1+B1t1ξ1+C1ξ2

1+D1t1+E1ξ1

)
f (t) e−j

(
A2t2

2+B2t2ξ2+C2ξ2
2+D2t2+E2ξ2

)
dt

=
1

2π

∫
R2

e−i
(

A1t2
1+B1t1ξ1+C1ξ2

1+D1t1+E1ξ1

)(
e−i
(

B1t1h1+2C1ξ1h1+C1h2
1+E1h1

)
f (t)

× e−j
(

B2t2h2+2C2ξ2h2+C2h2
2+E2h2

)
− f (t)

)
e−j
(

A2t2
2+B2t2ξ2+C2ξ2

2+D2t2+E2ξ2

)
dt

≤ 1
2π

∫
R2

∣∣∣∣e−i
(

A1t2
1+B1t1ξ1+C1ξ2

1+D1t1+E1ξ1

)(
e−i
(

B1t1h1+2C1ξ1h1+C1h2
1+E1h1

)
f (t)

× e−j
(

B2t2h2+2C2ξ2h2+C2h2
2+E2h2

)
− f (t)

)
e−j
(

A2t2
2+B2t2ξ2+C2ξ2

2+D2t2+E2ξ2

)∣∣∣∣ dt. (29)

Applying the triangle inequality for the quaternion described in Equation (10) re-
sults in ∣∣QQ1,Q2{ f }(ξ + h)−QQ1,Q2{ f }(ξ)

∣∣ ≤ 1
2π

∫
R2
| f (t)| dt. (30)

From Equation (29), we find that

lim
h→0

∣∣QQ1,Q2{ f }(ξ + h)−QQ1,Q2{ f }(ξ)
∣∣ = 0. (31)

Using the relations in Equations (30) and (31) with the Lebesgue-dominated conver-
gence theorem, we deduce that QQ1,Q2{ f } is continuous on R2.

A generalization of the Riemann–Lebesgue lemma in the setting of the QQPFT is
demonstrated by the following result:

Theorem 5. Let the quaternion function belong to L1(R2;H). Then, we have

lim
|ξ1|→∞

∣∣QQ1,Q2{ f }(ξ)
∣∣ = 0, (32)

uniformly in ξ2, and
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lim
|ξ2|→∞

∣∣QQ1,Q2{ f }(ξ)
∣∣ = 0, (33)

uniformly in ξ1.

Proof. We derive only the first part, and the proof of the remaining part is quite similar. It
is straightforward to verify that

e−iB1ξ1t1 = −e−iB1ξ1(t1+
π

B1ξ1
). (34)

Applying Equaiton (34) results in

QQ1,Q2{ f }(ξ)

= − 1
2π

∫
R2

e−i
(

A1t2
1+B1ξ1(t1+

π
B1ξ1

)+C1ξ2
1+D1t1+E1ξ1

)
f (t)e−j

(
A2t2

2+B2t2ξ2+C2ξ2
2+D2t2+E2ξ2

)
dt. (35)

The relation in Equation (35) can be rewritten in the form

QQ1,Q2{ f }(ξ)

= − 1
2π

∫
R2

e−i
(

A1(t1− π
B1ξ1

)2+B1ξ1t1+C1ξ2
1+D1(t1− π

B1ξ1
)+E1ξ1

)
f (t1 −

π

B1ξ1
, t2)

× e−j
(

A2t2
2+B2t2ξ2+C2ξ2

2+D2t2+E2ξ2

)
dt

=
1

4π

[ ∫
R2

e−i
(

A1t2
1+B1t1ξ1+C1ξ2

1+D1t1+E1ξ1

)
f (t)e−j

(
A2t2

2+B2t2ξ2+C2ξ2
2+D2t2+E2ξ2

)
dt dt

−
∫
R2

e−i
(

A1(t1− π
B1ξ1

)2+B1ξ1t1+C1ξ2
1+D1(t1− π

B1ξ1
)+E1ξ1

)
f (t1 −

π

B1ξ1
, t2)

× e−j
(

A2t2
2+B2t2ξ2+C2ξ2

2+D2t2+E2ξ2

)
dt
]

=
1

4π

∫
R2

e−i
(

A1t2
1+B1t1ξ1+C1ξ2

1+D1t1+E1ξ1

)
×
(

f (t)− eiA1

(
− 2πt1

B1ξ1
+( π

B1ξ1
)2+iD1

(
− 2πt1

B1ξ1
+( π

B1ξ1
)2
)

f (t1 −
π

B1ξ1
, t2)

)
× e−j

(
A2t2

2+B2t2ξ2+C2ξ2
2+D2t2+E2ξ2

)
dt.

This yields

lim
|ξ1|→∞

∣∣QQ1,Q2{ f }(ξ)
∣∣

≤ 1
4π

lim
|ξ1|→∞

∫
R2

∣∣∣∣ f (t)− ei(A1+B1)
(
− 2πt1

B1ξ1
+( π

B1ξ1
)2
)

f (t1 −
π

B1ξ1
, t2)

∣∣∣∣ dt = 0,

uniformly in ξ2. This ends the proof of the theorem.

4.2. Relation between the QQPFT and QFT

In order to obtain the other properties of the quaternion quadratic-phase Fourier
transform, we need to introduce the direct interaction between the quaternion quadratic-
phase Fourier transform and the quaternion Fourier transform as expressed below:
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QQ1,Q2{ f }(ξ)

=
1

2π

∫
R2

e−i(A1t2
1+B1t1ξ1+C1ξ2

1+D1t1+E1ξ1) f (t) e−j(A2t2
2+B2t2ξ2+C2ξ2

2+D2t2+E2ξ2) dt

= e−i(C1ξ2
1+E1ξ1)

{
1

2π

∫
R2

e−iB1t1ξ1
(
e−iA1t2

1 e−iD1t1 f (t)e−jD2t2 e−jA2t2
2
)

× e−jB2t2ξ2 dt
}

e−j(C2ξ2
2+E2ξ2)

= e−i(C1ξ2
1+E1ξ1)

{
1

2π

∫
R2

e−iB1t1ξ1 f̌ (t)e−jB2t2ξ2 dt
}

e−j(C2ξ2
2+E2ξ2)

= e−i(C1ξ2
1+E1ξ1)FH{ f̌ }(B1ξ1, B2ξ2)e−j(C2ξ2

2+E2ξ2), (36)

where

f̌ (t) = e−iD1t1 e−iA1t2
1 f (t)e−jA2t2

2 e−jD2t2 . (37)

and ∣∣ f̌ (t)∣∣ = ∣∣ f (t)∣∣. (38)

From the relation in Equation (36), we immediately obtain

ei(C1ξ2
1+E1ξ1)QQ1,Q2{ f }(ξ)ej(C2ξ2

2+E2ξ2) = FH{ f̌ }(B1ξ1, B2ξ2). (39)

Moreover, we have ∣∣QQ1,Q2{ f }(ξ)
∣∣ = ∣∣FH{ f̌ }(B1ξ1, B2ξ2)

∣∣. (40)

Now, we formulate the inversion theorem associated with the QQPFT as shown in the
next result:

Theorem 6. If f ∈ L1(R2;H) and QQ1,Q2{ f } ∈ L1(R2;H), then the reconstruction formula of
the QQPFT is given by

f (t) = |B1B2|
∫
R2

KQ1(t1, ξ1)QQ1,Q2{ f }(ξ)KQ2(t2, ξ2) dξ. (41)

Proof. In light of the reconstruction formula for the QFT defined by Equation (17), we
find that

f̌ (t) =
1

2π

∫
R2

eiξ1t1FH{ f̌ }(ξ) ejξ2t2 dξ

= |B1B2|
1

2π

∫
R2

eiB1ξ1t1FH{ f̌ }(B1ξ1, B2ξ2) ejB2ξ2t2 dξ

= |B1B2|
1

2π

∫
R2

eiB1ξ1t1 ei(C1ξ2
1+E1ξ1)QQ1,Q2{ f }(ξ)ej(C2ξ2

2+E2ξ2) ejB2ξ2t2 dξ. (42)

From Equation (37), we further obtain

e−iD1t1 e−iA1t2
1 f (t)e−jA2t2

2 e−jD2t2

= |B1B2|
1

2π

∫
R2

eiB1ξ1t1 ei(C1ξ2
1+E1ξ1)QQ1,Q2{ f }(ξ)ej(C2ξ2

2+E2ξ2) ejB2ξ2t2 dξ. (43)
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This will lead to

f (t) = |B1B2|
1

2π

∫
R2

eiD1t1 eiA1t2
1 eiB1ξ1t1 ei(C1ξ2

1+E1ξ1)QQ1,Q2{ f }(ξ)

× ej(C2ξ2
2+E2ξ2) ejB2ξ2t2 ejA2t2

2 ejD2t2 dξ

= |B1B2|
∫
R2

KQ1(t1, ξ1)QQ1,Q2{ f }(ξ)KQ2(t2, ξ2) dξ,

The proof is complete.

In the following theorem, we formulate the scalar part of Parseval’s formula for
the QQPFT, which will be useful for deriving the uncertainty principles concerning the
proposed transformation:

Theorem 7 (QQPFT Parseval’s formula). Let f , g ∈ L2(R2;H). Then, it holds that

〈 f , g〉 = |B1B2|〈QQ1,Q2{ f },QQ1,Q2{g}〉L2(R2;H). (44)

In particular, we have

‖ f ‖L2(R2;H) = |B1B2|‖QQ1,Q2{ f }‖L2(R2;H). (45)

Proof. According to Parseval’s formula for the QFT defined by Equation (16), for the
functions f̌ and ǧ, we have

〈 f̌ , ǧ〉L2(R2;H) = 〈FH{ f̌ },FH{ǧ}〉L2(R2;H)

= Sc
( ∫

R2
FH{ f̌ }(ξ)FH{ǧ}(ξ) dξ

)
= |B1B2|Sc

( ∫
R2
FH{ f̌ }(B1ξ)FH{ǧ}(B2ξ) dξ

)
. (46)

Using the relation in Equation (39), we infer that

〈 f̌ , ǧ〉

= |B1B2|
∫
R2

Sc
(

ei(C1ξ2
1+E1ξ1)QQ1,Q2{ f }(ξ)ej(C2ξ2

2+E2ξ2)e−j(C2ξ2
2+E2ξ2)

×QQ1,Q2{g}(ξ)e
−i(C1ξ2

1+E1ξ1)

)
dξ

= |B1B2|
∫
R2

Sc
(
QQ1,Q2{ f }(ξ)QQ1,Q2{g}(ξ)

)
dξ. (47)

The proof is complete.

Remark 1. It should be observed that for the right-sided quaternion quadratic-phase Fourier
transform, the full version of Parseval’s formula is valid:

( f , g) = |B1B2|
(
QQ1,Q2{ f },QQ1,Q2{g}

)
L2(R2;H)

. (48)

5. Inequalities for QQPFT

It is known that Heisenberg’s uncertainty principle in quantum physics tells us that
the position and velocity (or momentum) of a particle cannot be determined at exactly the
same time. In harmonic analysis especially, the uncertainty principle explains a relation
of the function to its Fourier transform. More precisely, it stated that a nonzero function
and its Fourier transformation cannot simultaneously concentrate around points. Inspired
by these facts, we extend several versions of the uncertainty principles in the context of
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the quaternion quadratic-phase Fouurier transform (QQPFT). First, we obtain a sharp
Hausdorff–Young inequality for the QQPFT as shown in the following theorem:

Theorem 8 (QQPFT Sharp Hausdorff-Young). Under the same conditions as in Theorem 2,
we have

|QQ1,Q2{ f }‖Ls(R2;H) ≤
C2

r

|B1B2|
1
s
‖ f ‖Lr(R2;H). (49)

where Cr is defined by Equation (21).

Proof. It directly follows from the relation in Equation (40) that

‖QQ1,Q2{ f }‖Ls(R2;H) =

( ∫
R2

∣∣QQ1,Q2{ f }(ξ1, ξ2)
∣∣ dξ

) 1
s

=

( ∫
R2

∣∣FH{ f̌ }(B1ξ1, B2ξ2)
∣∣s dξ

) 1
s

=

(
1

|B1B2|

∫
R2

∣∣FH{ f̌ }(ξ1, ξ2)
∣∣s dξ

) 1
s

=
1

|B1B2|
1
s
‖FH f̌ ‖Ls(R2;H). (50)

Applying the relations in Equations (20) and (38) results in

‖QQ1,Q2{ f }‖Ls(R2;H) ≤
C2

r

|B1B2|
1
s
‖ f̌ ‖Lr(R2;H)

=
C2

r

|B1B2|
1
s
‖ f ‖Lr(R2;H), (51)

The proof is complete.

We further formulate Pitt’s inequality for the QQPFT, which is an extension of Pitt’s
inequality for the QFT in Theorem 3. It seems that this result is an improved version of
Pitt’s inequality for the QFT:

Theorem 9 (QQPFT Pitt’s inequality). Under the same assumptions as in Theorem 3, the
following holds:∫

R2
|ξ|−α

∣∣QQ1,Q2{ f }(ξ)
∣∣2 dξ ≤ M(α)|B1B2|α−1

∫
R2
|t|α
∣∣ f (t)∣∣2 dt. (52)

Proof. Including Equation (37) into both sides of Equaiton (22) yields∫
R2
|ξ|−α|FH{ f̌ }(ξ)|2 dξ ≤ M(α)

∫
R2
|t|α| f̌ (t)|2 dt. (53)

By setting (ξ1, ξ2) = (B1ξ1, B2ξ2), we obtain∫
R2
|B1B2||B1B2|−α|ξ|−α|FH{ f̌ }(B1ξ1, B2ξ2)|2 dξ ≤ M(α)

∫
R2
|t|α| f̌ (t)|2 dt. (54)
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By substituting Equations (37) and (39) into both sides of the above identity, the
following result is obtained:∫

R2
|B1B2||B1B2|−α|ξ|−α

∣∣ei(C1ξ2
1+E1ξ1)QQ1,Q2{ f }(ξ)ej(C2ξ2

2+E2ξ2)
∣∣2 dξ

≤ M(α)
∫
R2
|t|α
∣∣e−iD1t1 e−iA1t2

1 f (t)e−jA2t2
2 e−jD2t2

∣∣2 dt. (55)

Finally, we have∫
R2
|B1B2|1−α|ξ|−α

∣∣QQ1,Q2{ f }(ξ)
∣∣2 dξ ≤ M(α)

∫
R2
|t|α
∣∣ f (t)∣∣2 dt, (56)

The proof is complete.

Now, we are in a position to derive the Heisenberg-type uncertainty principle for the
QQPFT, which is an extension of Theorem 1 mentioned earlier:

Theorem 10. Under the same assumptions as in Theorem 1, one can obtain

∫
R2

t2
k | f (t)|

2 dt
∫
R2

ξ2
k
∣∣QQ1,Q2{ f }(ξ)

∣∣2 dξ ≥ 1
4B2

k |B1B2|

( ∫
R2
| f (t)|2 dt

)2

. (57)

Proof. Replacing f (t) with f̌ (t), described in Equation (37), into both sides of Equation
(19) gives

∫
R2

t2
k | f̌ (t)|

2 dt
∫
R2

ξ2
k
∣∣FH{ f̌ }(ξ)

∣∣2 dξ ≥ 1
4

( ∫
R2
| f̌ (t)|2 dt

)2

. (58)

Consequently, we have

∫
R2

t2
k | f̌ (t)|

2 dt
∫
R2
|B1B2|B2

k ξ2
k
∣∣FH{ f̌ }(B1ξ1, B2ξ2)

∣∣2 dξ ≥ 1
4

( ∫
R2
| f̌ (t)|2 dt

)2

. (59)

By inserting Equations (37) and (39) into the above identity, we find that∫
R2

t2
k
∣∣e−iA1t2

1 e−iD1t1 f (t)e−jD2t2 e−jA2t2
2
∣∣2 dt

×
∫
R2

B2
k |B1B2|ξ2

k
∣∣ei(C1ξ2

1+E1ξ1)QQ1,Q2{ f }(ξ)ej(C2ξ2
2+E2ξ2)

∣∣2 dξ

≥ 1
4

( ∫
R2
|e−iA1t2

1 e−iD1t1 f (t)e−jD2t2 e−jA2t2
2 |2 dt

)2

. (60)

Simplifying this gives the required result.

In the following paragraph, we state and prove the logarithmic uncertainty principle
related to the QQPFT:

Theorem 11. Let f ∈ S(R2;H). Then, one obtains

∫
R2

ln
√

t2
1 + t2

2

∣∣ f (t)∣∣2 dt
∫
R2

ln
√

B2
1ξ2

1 + B2
2ξ2

2

∣∣∣∣QQ1,Q2{ f }(ξ)
∣∣∣∣2 dξ

≥
∣∣B1B2

∣∣2[Γ′(1/2)
Γ(1/2)

− ln π

] ∫
R2

∣∣QQ1,Q2{ f }(ξ)
∣∣2 dt. (61)
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Proof. According to the logarithmic uncertainty principle concerning the QFT [27,28],
we obtain ∫

R2
ln
√

t2
1 + t2

2

∣∣ f̌ (t)∣∣2 dt
∫
R2

ln
√

ξ2
1 + ξ2

2

∣∣FH{ f̌ }(ξ)
∣∣2 dξ

≥
∫
R2

[
Γ′(1/2)
Γ(1/2)

− ln π

]
| f̌ (t)|2 dt. (62)

Upon putting (B1ξ1, B2ξ2) in place of (ξ1, ξ2), we find∫
R2

ln
√

t2
1 + t2

2

∣∣ f̌ (t)∣∣2 dt
∫
R2

1
|B1B2|

ln
√

B2
1ξ2

1 + B2
2ξ2

2

∣∣FH{ f̌ }(B1ξ1, B2ξ2)
∣∣2 dξ

≥
∫
R2

[
Γ′(1/2)
Γ(1/2)

− ln π

]
| f̌ (t)|2 dt. (63)

Through Equation (39), we infer that∫
R2

ln
√

t2
1 + t2

2

∣∣ f̌ (t)∣∣2 dt
∫
R2

1
|B1B2|

ln
√

B2
1ξ2

1 + B2
2ξ2

2

×
∣∣∣∣ei(C1ξ2

1+E1ξ1)QQ1,Q2{ f }(ξ)ej(C2ξ2
2+E2ξ2)

∣∣∣∣2 dξ

≥
∫
R2

[
Γ′(1/2)
Γ(1/2)

− ln π

]
| f̌ (t)|2 dt. (64)

By simplifying and using Equation (38), we see that

∫
R2

ln
√

t2
1 + t2

2

∣∣ f (t)∣∣2 dt
∫
R2

1
|B1B2|

ln
√

B2
1ξ2

1 + B2
2ξ2

2

∣∣∣∣QQ1,Q2{ f }(ξ)
∣∣∣∣2 dξ

≥
∫
R2

[
Γ′(1/2)
Γ(1/2)

− ln π

]
| f (t)|2 dt. (65)

Through Equation (45), we obtain

∫
R2

ln
√

t2
1 + t2

2

∣∣ f (t)∣∣2 dt
∫
R2

1
|B1B2|

ln
√

B2
1ξ2

1 + B2
2ξ2

2

∣∣∣∣QQ1,Q2{ f }(ξ)
∣∣∣∣2 dξ

≥
∫
R2

[
Γ′(1/2)
Γ(1/2)

− ln π

]∣∣B1B2
∣∣∣∣QQ1,Q2{ f }(ξ)

∣∣2 dt,

which gives the desired result.

Observe that for 1 ≤ p ≤ 2, we may extend the L2-norm to the Lp-norm in Equation (57)
and obtain the following result:

Theorem 12. Under the conditions in Theorem 1, the following holds:∫
R2

tp
k | f (t)|

p dt
∫
R2

ξ
p
k |QQ1,Q2{ f }(ξ)|p dξ ≥ 1

2p |B1B2|−1|Bk|−p
(∫

R2
| f (t)|2 dt

)p
, k = 1, 2. (66)

In particular, we have

∫
R2

tp
k | f (t)|

p dt
∫
R2

ξ
p
k |QQ1,Q2{ f }(ξ)|p dξ ≥ 1

2p |Bk|−p
(∫

R2
|QQ1,Q2{ f }|2 dt

)1/p
. (67)

for which 1
p + 1

q = 1.
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Proof. In fact, we have(∫
R2

tp
k | f (t)|

p dξ

)1/p(∫
R2

ξ
p
k |FH{ f }(ξ)|p dξ

)1/p
≥ 1

2

∫
R2
| f (t)|2 dt. (68)

Replacing f (t) with f̌ (t), described in Equation (37), into both sides of Equation (68)
yields (∫

R2
tp
k | f̌ (t)|

p dt
)1/p(∫

R2
ξ

p
k |FH{ f̌ }(ξ)|p dξ

)1/p
≥ 1

2

∫
R2
| f̌ (t)|2 dt. (69)

Hence, we have(∫
R2

tp
k | f̌ (t)|

p dt
)1/p(∫

R2
|B1B2||Bk|pξ

p
k |FH{ f̌ }(B1ξ1, B2ξ2)|p dξ

)1/p
≥ 1

2

∫
R2
| f̌ (t)|2 dt. (70)

Through the application of Equations (38)–(40) into the above identity, we obtain(∫
R2

tp
k | f (t)|

p dt
)1/p(∫

R2
|B1B2||Bk|pξ

p
k |QQ1,Q2{ f }(ξ)|p dξ

)1/p
≥ 1

2

∫
R2
| f (t)|2 dt. (71)

This is equivalent to

∫
R2

tp
k | f (t)|

p dt
∫
R2

ξ
p
k |QQ1,Q2{ f }(ξ)|p dξ ≥ 1

2p |B1B2|−1|Bk|−p
(∫

R2
| f (t)|2 dt

)p
.

Under Equation (45), we obtain

∫
R2

tp
k | f (t)|

p dt
∫
R2

ξ
p
k |QQ1,Q2{ f }(ξ)|p dξ ≥ 1

2p |Bk|−p
(∫

R2
|QQ1,Q2{ f }|2 dt

)1/p
.

This ends the proof of the theorem.

Remark 2. It should be observed that for p = 2, Theorem 12 changes to Theorem 10.

6. Conclusions

In this paper, we introduced the quaternion quadratic-phase Fourier transform and
investigated properties such as the continuous and Riemann–Lebesgue properties. We
derived several inequalities related to this transformation. The proof of this uncertainty
utilizes the basic relationship between the quaternion quadratic-phase Fourier transform
and quaternion Fourier transform. Some possible future extensions include the application
of the proposed method in image processing, which is well documented in [29,30], as well
as in computer graphics, scientific visualization and numerical analysis, which have been
explored in [31–34].
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