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Abstract: The fractional Fourier transform is a natural generalization of the Fourier transform. In this
work, we recall the definition of the fractional Fourier transform and its relation to the conventional
Fourier transform. We exhibit that this relation permits one to obtain easily the main properties of the
fractional Fourier transform. We investigate the sharp Hausdorff-Young inequality for the fractional
Fourier transform and utilize it to build Matolcsi-Szücs inequality related to this transform. The
other versions of the inequalities concerning the fractional Fourier transform is also discussed in
detail. The results obtained in this paper are very significant, especially in the field of fractional
differential equations.
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1. Introduction

The fractional Fourier transform, which was originally introduced by [1], has received
considerable attention in recent years from both theoretical and practical points of view.
This important transform is also known as a nontrivial generalization of the conventional
Fourier transform (FT). Researchers in [2–7] have focused on investigating the fundamental
properties of the fractional Fourier transform such as convolution, correlation and inequali-
ties. These properties are expansions of well known results of the FT and other related
transforms (see, e.g., [8–11]. The authors of [12–15]) have developed its applications in areas
like optics, filter design, pattern recognition. Some researchers also have been interested in
generalizing various transformations utilizing the kernel of the fractional Fourier transform.
For instance, the authors in [16–18] have proposed an extension of Stockwell transform
so-called the fractional Stockwell transform. Several properties of the transform were also
derived in some detail. In [19–22], the authors have successfully presented the fractional
wavelet transform, which is a generalization of the conventional wavelet transform [23–25]
in the fractional Fourier domain. They found that the properties of new wavelet transform
are a modification of the corresponding wavelet transform properties. Keeping in view
the fact that the uncertainty principles for the fractional Fourier transforms are one of the
most fundamental results associated with this transform. In [23,26–33], the authors have
demonstrated many variants and generalizations of the uncertainty principle for various
transformations.

In the present work, we first introduce the definition of the fractional Fourier transform
(FRFT) and basic properties. As was discussed in [34,35], we propose another version
of a natural link between the fractional Fourier transform and Fourier transform. We
show that the Heisenberg-type uncertainty principles for the fractional Fourier transforms
can be obtained using the interesting relation. We also establish the other versions of

Mathematics 2023, 11, 1234. https://doi.org/10.3390/math11051234 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11051234
https://doi.org/10.3390/math11051234
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-6518-6705
https://doi.org/10.3390/math11051234
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11051234?type=check_update&version=1


Mathematics 2023, 11, 1234 2 of 17

the uncertainty principles in framework of the fractional Fourier transform like Matolcsi-
Szücs inequality, Donoho-Stark uncertainty principles, and Shannon entropy uncertainty
principle. It is emphasized that the proposed uncertainty principles in this work are quite
different from those that have been studied in [3–5].

We display here the plan of this paper. In Section 2 we remind definition of the
fractional Fourier transform and basic notations that will be useful later. Also, in this section
the basic relationship between the Fourier transform and fractional Fourier transform are
studied. Section 3 presents three Heisenberg-type uncertainty principles for the fractional
Fourier transform, which are generalizations of the famous uncertainty principles related
to the Fourier transform. We extend Matolcsi-Szücs inequality to the fractional Fourier
transform in Section 4. In Section 5 we focus our attention to the derivation of Donoho-
Stark uncertainty principle associated with the fractional Fourier transform. In Section 6
we generalize Shannon entropy in the framework of the fractional Fourier transform. A
conclusion may be found at the end of this work.

2. Fractional Fourier Transform

First of all we discuss the relevant materials related to the fractional Fourier transform
(FRFT) [1,13,36], including the basic connection between the Fourier transform and frac-
tional Fourier transform, which will useful in the sequel. We first introduce some basic
symbols shown in Table 1.

Table 1. Symbol Description.

Symbols Description

F Fourier transform

Fθ Fractional Fouirer transform

Pr Projection operator

E, T Measurable sets

R Real Numbers

Definition 1. Fix 1 ≤ r < ∞, for measurable functions on R we define the linear space Lr(R)-
norm as

‖ f ‖Lr(R) =

(∫
R
| f (t)|r dt

)1/r
< ∞. (1)

Clearly for r → ∞ we obtain L∞(R)-norm

‖ f ‖L∞(R) = ess supt∈R| f (t)|. (2)

If f ∈ L∞(R) is continuous then

‖ f ‖L∞(R) = sup
t∈R
| f (t)|. (3)

The inner product of L2(R) is defined as

〈 f , g〉L2(R) =
∫
R

f (t)g(t) dt. (4)

We remind that the Fourier transform of a function f ∈ L2(R) is given by (see [37,38])

F{ f }(ξ) = 1√
2π

∫
R

f (ξ)e−ixξ dx. (5)
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Definition 2. For a given function f ∈ L1(R), its FRFT with parameter θ is given by the integral

Fθ{ f }(ξ) =
∫
R

f (t)Kθ(ξ, t) dt, (6)

where the kernel transform Kθ(ξ, t) is defined by

Kθ(ξ, t) =


Aθei(t2+ξ2) cot θ

2 −itξ csc θ , θ 6= nπ
δ(t− ξ), θ = 2nπ
δ(t + ξ), θ = (2n + 1)π, n ∈ Z.

(7)

Here δ is a Dirac delta function and

Aθ =
ei( θ

2−
π
4 )

√
2π sin θ

=

√
1− i cot θ

2π
, Aθ =

√
1 + i cot θ

2π
(8)

It is evident that

|Aθ | =
√

csc θ

2π
, csc θ =

1
sin θ

. (9)

It is straightforward to check that the FRFT kernel satisfies the following important
properties:

Kθ(ξ, t) = K−θ(ξ, t),

and ∫
R

Kθ(ξ, t)Kθ(ξ ′, t) dt = δ(ξ − ξ ′),

where Kθ(ξ, t) is the complex conjugate of Kθ(ξ, t).

Lemma 1. For every f ∈ L1(R) and Fθ{ f } ∈ L∞(R) we have

‖Fθ{ f }‖L∞(R) ≤ |Aθ |‖ f ‖L1(R). (10)

Proof. It directly follows with (3) and (6) that

|Fθ{ f }(ξ)| ≤ |Aθ |
∫
R

∣∣ f (t)ei(t2+ξ2) cot θ
2 −itξ csc θ

∣∣ dt. (11)

This clearly implies that

‖Fθ{ f }‖L∞(R) = sup
ξ∈R
|Fθ{ f }(ξ)|

≤ |Aθ |
∫
R

∣∣ f (t)∣∣ dt

= |Aθ |‖ f ‖L1(R).

This is required result.

Definition 3. Suppose that f ∈ L1(R) and Fθ{ f } ∈ L1(R). The inverse FRFT of f is given by
the integral

f (t) = F−1
θ

(
Fθ{ f }

)
=
∫
R
Fθ{ f }(ξ)K−θ(ξ, t) dξ

=
∫
R
Fθ{ f }(ξ)Aθe−i(t2+ξ2) cot θ

2 +itξ csc θ dξ. (12)
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Below we express a fundamental connection between the Fourier transform and
fractional Fourier transform. Due to the FRFT definition (6) we have

Fθ{ f }(ξ) = Aθ

∫
R

f (t)ei(t2+ξ2) cot θ
2 −itξ csc θ dt

= Aθeiξ2 cot θ
2

∫
R

f (t)eit2 cot θ
2 −itξ csc θ dt

= Aθeiξ2 cot θ
2
√

2πF{eit2 cot θ
2 f (t)}(ξ csc θ). (13)

Denoted by
fθ(t) = eit2 cot θ

2 f (t), (14)

then we obtain

e−iξ2 cot θ
2

√
1− i cot θ

Fθ{ f }(ξ) = F{ fθ}(ξ csc θ). (15)

Hence,

e−iξ2 cot θ
2

√
1− i cot θ

Fθ{eit2 cot θ
2 f }(ξ) = F{ f }

(
ξ csc θ

)
. (16)

Now we provide the different proof of Parseval formula for the FRFT using the direct
relationship between the FT and FRFT.

Lemma 2 (FRFT Parseval). For all f , g ∈ L2(R), the following relation holds:

〈 f , g〉L2(R) = 〈Fθ{ f },Fθ{g}〉L2(R), (17)

and
‖ f ‖2

L2(R) = ‖Fθ{ f }‖2
L2(R). (18)

Proof. According to the Parseval’s formula for the FT we immediately obtain∫
R

f (t)g(t) dt =
∫
R
F{ f }(ξ)F{g}(ξ) dξ. (19)

Replacement of f by fθ and g by gθ on both sides of (19) we see that∫
R

fθ(t)gθ(t) dt =
∫
R
F{ fθ}(ξ)F{gθ}(ξ) dξ∫

R
eit2 cot θ

2 f (t) eit2 cot θ
2 g(t) dt =

∫
R
F{ fθ}(ξ)F{gθ}(ξ) dξ. (20)

An application of relations (13) and (14) will lead to∫
R

f (t)g(t) dt =
∫
R
F{ fθ}(csc θξ)F{gθ}(csc θξ) d csc θξ

= | csc θ|
∫
R

e−iξ2 cot θ
2

√
1− i cot θ

Fθ{ f }(ξ) e−iξ2 cot θ
2

√
1− i cot θ

Fθ{g}(ξ) dξ

=
| csc θ|
|1− i cot θ|

∫
R
Fθ{ f }(ξ)Fθ{g}(ξ) dξ

=
∫
R
Fθ{ f }(ξ)Fθ{g}(ξ) dξ, (21)

which proves the theorem.
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3. Heisenberg-Type Uncertainty Principles for FRFT

Our interest is to derive three Heisenberg-type uncertainty principles involving the
FRFT. They are generalized forms of the Heisenberg-type uncertainty principles related to
the conventional Fourier transform.

Heisenberg-type uncertainty principles for the FRFT explains the function f (t) is the
probability that a particle’s position is ξ, and its fractional Fourier transform Fθ{ f } is the
probability that its momentum is ξ, then the principle informs a lower bound on how
spread out these two probability distributions must be.

Theorem 1. Let f be in L2(R). Then the following inequality holds:

∫
R
|t|2
∣∣ f (t)∣∣2 dt

∫
R
|ξ|2
∣∣Fθ{ f }(ξ)

∣∣2 dξ ≥ | sin θ|2
4

(∫
R

∣∣ f (t)∣∣2 dt
)2

. (22)

Proof. By virtue of the uncertainty principle for the FT we obtain

∫
R
|t|2
∣∣ fθ(t)

∣∣2 dt
∫
R
|ξ|2
∣∣Fθ{ fθ}(ξ)

∣∣2 dξ ≥ 1
4

(∫
R

∣∣ fθ(t)
∣∣2 dt

)2
. (23)

We have from (14)

∫
R
|t|2
∣∣eit2 cot θ

2 f (t)
∣∣2 dt

∫
R
|ξ csc θ|2

∣∣F{ fθ}(ξ csc θ)
∣∣2 d(ξ csc θ) ≥ 1

4

(∫
R

∣∣eit2 cot θ
2 f (t)

∣∣2 dt
)2

∫
R
|t|2
∣∣ f (t)∣∣2 dt

∫
R
|ξ|2(csc θ)3∣∣F{ fθ}(ξ csc θ)

∣∣p dξ ≥ 1
4

(∫
R

∣∣ f (t)∣∣2 dt
)2

| csc θ|3
∫
R
|t|2
∣∣ f (t)∣∣2 dt

∫
R
|ξ|2
∣∣F{ fθ}(ξ csc θ)

∣∣2 dξ ≥ 1
4

(∫
R

∣∣ f (t)∣∣p dt
)2

.

Applying (15) yields

| csc θ|3
∫
R
|t|2
∣∣ f (t)∣∣2 dt

∫
R
|ξ|2
∣∣ e−iξ2 cot θ

2
√

1− i cot θ
Fθ{ f }(ξ)

∣∣2 dξ ≥ 1
4

(∫
R

∣∣ f (t)∣∣2 dt
)2

| csc θ|3
|1− i cot θ|

∫
R
|t|2
∣∣ f (t)∣∣2 dt

∫
R
|ξ|2
∣∣Fθ{ f }(ξ)

∣∣2 dξ ≥ 1
4

(∫
R

∣∣ f (t)∣∣2 dt
)2

| csc θ|3| sin θ|
∫
R
|t|2
∣∣ f (t)∣∣2 dt

∫
R
|ξ|2
∣∣Fθ{ f }(ξ)

∣∣2 dξ ≥ 1
4

(∫
R

∣∣ f (t)∣∣2 dt
)2

∫
R
|t|2
∣∣ f (t)∣∣2 dt

∫
R
|ξ|2
∣∣Fθ{ f }(ξ)

∣∣2 dξ ≥ | sin θ|2
4

(∫
R

∣∣ f (t)∣∣2 dt
)2

,

and the proof is complete.

A simple modification of Theorem 1 yields the following variant.

Theorem 2. For any f ∈ L2(R) and α, γ ≥ 1, one has

( ∫
R
|t|2γ

∣∣ f (t)∣∣2 dt
) α

α+γ
( ∫

R
|ξ|2α

∣∣Fθ{ f }(ξ)
∣∣2 dξ

) γ
α+γ

≥
(
| sin θ|2

4

) αγ
α+γ

‖ f ‖2
L2(R). (24)
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Proof. It follows from Hölder’s inequality and Plancherel theorem for the FRFT (18) that∫
R
|ξ|2
∣∣Fθ{ f }(ξ)

∣∣2 dξ

=
∫
R
|ξ|2
∣∣Fθ{ f }(ξ)

∣∣ 2
α
∣∣Fθ{ f }(ξ)

∣∣2− 2
α dξ

≤
( ∫

R

(
|ξ|2
∣∣Fθ{ f }(ξ)

∣∣ 2
α

)α

dξ

) 1
α
( ∫

R

(∣∣Fθ{ f }(ξ)
∣∣2− 2

α

) α
α−1

dξ

) α−1
α

=

( ∫
R
|ξ|2α

∣∣Fθ{ f }(ξ)
∣∣2 dξ

) 1
α
( ∫

R

∣∣Fθ{ f }(ξ)
∣∣2 dξ

)1− 1
α

=

( ∫
R
|ξ|2α

∣∣Fθ{ f }(ξ)
∣∣2 dξ

) 1
α
( ∫

R

∣∣ f (t)∣∣2 dt
)1− 1

α

. (25)

Hence, ( ∫
R
|ξ|2α

∣∣Fθ{ f }(ξ)
∣∣2 dξ

) 1
α

≥
∫
R |ξ|

2
∣∣Fθ{ f }(ξ)

∣∣2 dξ

‖ f ‖2( α−1
α )

L2(R)

. (26)

In a similar way, we get

( ∫
R
|t|2γ

∣∣ f (t)∣∣2 dt
) 1

γ

≥
∫
R |t|

2
∣∣ f (t)∣∣2 dt

‖ f ‖
2( γ−1

γ )

L2(R)

. (27)

By combining (26) and (27) we obtain

( ∫
R
|t|2γ

∣∣ f (t)∣∣2 dt
) 1

γ
( ∫

R
|ξ|2α

∣∣Fθ{ f }(ξ)
∣∣2 dξ

) 1
α

≥
∫
R |t|

2
∣∣ f (t)∣∣2 dt

∫
R |ξ|

2
∣∣Fθ{ f }(ξ)

‖ f ‖
2( γ−1

γ + α−1
α )

L2(R)

. (28)

Applying (22) in Theorem 1 results in

( ∫
R
|t|2γ

∣∣ f (t)∣∣2 dt
) 1

γ
( ∫

R
|ξ|2α

∣∣Fθ{ f }(ξ)
∣∣2 dξ

) 1
α

≥ | sin θ|2
4
‖ f ‖

2( α+γ
αγ )

L2(R) . (29)

Or, equivalently,

( ∫
R
|t|2γ

∣∣ f (t)∣∣2 dt
) α

α+γ
( ∫

R
|ξ|2α

∣∣Fθ{ f }(ξ)
∣∣2 dξ

) γ
α+γ

≥
(
| sin θ|2

4

) αγ
α+γ

‖ f ‖2
L2(R), (30)

and the proof is complete.

The extension of Theorem 1 is also showed by the following result.

Theorem 3. Under the same conditions as in Theorem 1 we have∫
R
|t|s
∣∣ f (t)∣∣s dt

∫
R
|ξ|s
∣∣Fθ{ f }(ξ)

∣∣s dξ ≥ | sin θ| s
2+1

2s

(∫
R

∣∣ f (t)∣∣2 dt
)s

(31)

for 1 ≤ s ≤ 2.
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Proof. It follows by means of the Heisenberg’s uncertainty for the conventional Fourier
transform that ∫

R
|t|s| f (t)|s dt

∫
R
|ξ|s|F{ f }(ξ)|s dξ ≥ 1

2s

(∫
R
| f (t)|2 dt

)s
.

Since fθ defined by (14) is in L2(R), then by replacing f by fθ into the above identity,
we obtain ∫

R
|t|s| fθ(t)|s dt

∫
R
|ξ|s|F{ fθ}(ξ)|s dξ ≥ 1

2s

(∫
R
| fθ(t)|2 dt

)s
.

Putting ξ = ξ csc θ and applying (14) we get

∫
R
|t|s
∣∣eit2 cot θ

2 f (t)
∣∣s dt

∫
R
|ξ csc θ|s

∣∣F{ fθ}(ξ csc θ)
∣∣s d(ξ csc θ) ≥ 1

2s

(∫
R

∣∣eit2 cot θ
2 f (t)

∣∣2 dt
)s

∫
R
|t|s
∣∣ f (t)∣∣s dt

∫
R
|ξ|s(csc θ)s+1∣∣F{ fθ}(ξ csc θ)

∣∣s dξ ≥ 1
2s

(∫
R

∣∣ f (t)∣∣s dt
)s

| csc θ|s+1
∫
R

ts∣∣ f (t)∣∣s dt
∫
R
|ξ|s
∣∣F{ fθ}(ξ csc θ)

∣∣s dξ ≥ 1
2s

(∫
R

∣∣ f (t)∣∣2 dt
)s

Due to (15) we have

| csc θ|s+1
∫
R

ts∣∣ f (t)∣∣s dt
∫
R
|ξ|s
∣∣ e−iξ2 cot θ

2
√

1− i cot θ
Fθ{ f }(ξ)

∣∣s dξ ≥ 1
2s

(∫
R

∣∣ f (t)∣∣2 dt
)s

| csc θ|s+1

|1− i cot θ| s
2

∫
R
|t|s
∣∣ f (t)∣∣s dt

∫
R
|ξ|s
∣∣Fθ{ f }(ξ)

∣∣s dξ ≥ 1
2s

(∫
R

∣∣ f (t)∣∣2 dt
)s

| csc θ|s+1| sin θ|
s
2

∫
R
|t|s
∣∣ f (t)∣∣s dt

∫
R
|ξ|s
∣∣Fθ{ f }(ξ)

∣∣s dξ ≥ 1
2s

(∫
R

∣∣ f (t)∣∣2 dt
)s

∫
R
|t|s
∣∣ f (t)∣∣s dt

∫
R
|ξ|s
∣∣Fθ{ f }(ξ)

∣∣s dξ ≥ | sin θ| s
2+1

2s

(∫
R

∣∣ f (t)∣∣2 dt
)s

,

and the proof is complete.

4. Matolcsi-Szücs Uncertainty Principles

We first state the following result, which describes the sharp Hausdorff-Young inequal-
ity related to the FRFT.

Theorem 4 (FRFT Hausdorff-Young). For any 1 ≤ r ≤ 2 such that 1
r +

1
s = 1. Then for every

function f in Lr(R), it holds( ∫
R

∣∣Fθ{ f }(ξ)
∣∣s dξ

)1/s

≤ | sin θ|
1
s−

1
2 r1/2rs−1/2s

( ∫
R
| f (t)|r dt

)1/r

. (32)

Proof. Applying the sharp Hausdorff-Young inequality related to the conventional Fourier
transform results in(∫

R
|F{ f }(ξ)|s dξ

)1/s
≤ r1/2rs−1/2s

(∫
R
| f (t)|r dt

)1/r
. (33)

Including fθ defined by (14) into both sides of (33) yields(∫
R
|F{ fθ}(ξ)|s dξ

)1/s
≤ r1/2rs−1/2s

(∫
R
| fθ(t)|r dt

)1/r
. (34)
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We further have(∫
R
|F{ fθ}(ξ csc θ)|s dξ csc θ

)1/s
≤ r1/2rs−1/2s

(∫
R
| fθ(t)|r dt

)1/r
. (35)

Using (15) we may write the above identity as(∫
R

∣∣∣∣ e−iξ2 cot θ
2

√
1− i cot θ

Fθ{ f }(ξ)
∣∣∣∣s dξ csc θ

)1/s

≤ r1/2rs−1/2s
(∫

R
|eit2 cot θ

2 f (t)|r dt
)1/r

. (36)

Thus (
| sin θ|

s
2−1

∫
R

∣∣Fθ{ f }(ξ)
∣∣s dξ

)1/s

≤ r1/2rs−1/2s
( ∫

R
| f (t)|r dt

)1/r

. (37)

Or, equivalently,( ∫
R

∣∣Fθ{ f }(ξ)
∣∣s dξ

)1/s

≤ | sin θ|
1
s−

1
2 r1/2rs−1/2s

( ∫
R
| f (t)|r dt

)1/r

, (38)

which finishes the proof of the theorem.

Application of the above theorem will lead to the next result.

Theorem 5 (Matolcsi-Szücs Inequality). Let f ∈ Lr1(R) ∩ Lr2(R) such that 1 < r1 ≤ r2 ≤ 2,
then

‖Fθ{ f }‖Ls2 (R) ≤
∣∣ supp(Fθ{ f })

∣∣ s1−s2
s1s2 | sin θ|

1
s1
− 1

2 r1/2r1
1 s−1/2s1

1

∣∣ supp( f )
∣∣ r2−r1

r1r2 ‖ f ‖Lr2 (R), (39)

where 1
r1
+ 1

s1
= 1 and 1

r2
+ 1

s2
= 1.

Proof. From Theorem 4 and Hölder’s inequality we infer that

‖Fθ{ f }‖Ls2 (R) ≤
∣∣ supp(Fθ{ f })

∣∣ s1−s2
s1s2 ‖Fθ{ f }‖Ls1 (R)

≤
∣∣ supp(Fθ{ f })

∣∣ s1−s2
s1s2 | sin θ|

1
s1
− 1

2 r1/2r1
1 s−1/2s1

1 ‖ f ‖Lr1 (R). (40)

Setting F = supp( f ), by Hölder’s inequality we obtain

‖ f ‖Lr1 (R) = ‖χF f ‖Lr1 (R)

≤
( ∫

R
|χF(t)| dt

) r2−r1
r1r2

( ∫
R
| f (t)|

r1r2
r1 dt

) r1
r1r2

=

( ∫
R
|χF(t)| dt

) r2−r1
r1r2

( ∫
R
| f (t)|r2 dt

) 1
r2

=
∣∣F∣∣ r2−r1

r1r2 ‖ f ‖Lr2 (R)

=
∣∣ supp( f )

∣∣ r2−r1
r1r2 ‖ f ‖Lr2 (R). (41)

In this case χF is the characteristic function of F. Including (41) into (40) gives the desired
result.

Corollary 1. Let f ∈ Lr(R) with 1 < r ≤ 2, then

| sin θ|
1
2−

1
s r−1/2rs1/2s ≤

∣∣ supp(Fθ{ f })
∣∣ s−2

2s
∣∣ supp( f )

∣∣ 2−r
2r , (42)
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where 1
r +

1
s = 1.

Proof. This directly follows from the Plancherel theorem for the FRFT (18).

5. Donoho-Stark Uncertainty Principle

As we know that Donoho-Stark uncertainty principle [39] is constructed using the
basic concept of ε-localization of a function (signal) on a measurable set in both the space
and frequency domains. Many versions of this uncertainty have been proposed for various
generalized transformations (see [40,41]). Let us now remind the following definition.

Definition 4. Given a measurable set T ⊂ R and let εT be a positive real number. It is said that a
function f ∈ Lr(R), 1 ≤ r ≤ 2, is εT-localized to T in Lr(R)-norm, if it satisfies( ∫

R\T
| f (t)|r dt

)1/r

= ‖ f − PT f ‖Lr(R) ≤ εT‖ f ‖Lr(R), (43)

where projection operator PT is given by

(PT f )(t) = (χT f )(t) =


f (t), t ∈ T

0, t ∈ R \ T.
(44)

We also introduce a projection operator QT given by

Fθ{QT f } =
(

PT(Fθ{ f })
)
. (45)

Based on (43) and (45) we may define that Fθ{ f } is εT-localized to T in Lr(R)-norm if the
following is satisfied:

‖Fθ{ f } − Fθ{QT f }‖Lr(R) ≤ εT‖Fθ{ f }‖Lr(R). (46)

As a direct consequence of Equation (45) we obtain the following important results.

Lemma 3. Assume that |T| < ∞. For every f belongs to Lr(R) with 1 ≤ r ≤ 2, we have

QT f (t) =
∫

T
Fθ{ f }(ξ)Aθe−i(t2+ξ2) cot θ

2 +itξ csc θ dξ, (47)

where |T| is the Lebesgue measure on T.

Proof. It is straightforward to show that Fθ{ f } ∈ L1(R) ∩ L2(R). This implies that

QT f = F−1
θ

(
PT(Fθ{ f })

)
, (48)

which gives the desired result according to (12) and (44).

Lemma 4. Let f be in Lr(R). If 1 ≤ r ≤ 2 and 1
r +

1
s = 1, then

‖Fθ{QT f }‖Ls(R) ≤ | sin θ|
1
s−

1
2 r1/2rs−1/2s‖ f ‖Lr(R). (49)
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Proof. An explicit computation shows that

‖Fθ{QT f }‖Ls(R) =

( ∫
T

∣∣Fθ{ f }(ξ)
∣∣s dξ

)1/s

≤
( ∫

R

∣∣Fθ{ f }(ξ)
∣∣s dξ

)1/s

≤ | sin θ|
1
s−

1
2 r1/2rs−1/2s‖ f ‖Lr(R). (50)

The proof is complete.

Lemma 5. Let T and E be measurable subsets of R. For any f ∈ Ls(R) with 1 ≤ s ≤ 2 and
1
s +

1
r = 1 we have

‖Fθ{QT PE f }‖Ls(R) ≤ |Aθ |‖ f ‖Ls(R)|T|1/r|E|1/r. (51)

Proof. Assume that |T| < ∞ and |E| < ∞. Let us write

Fθ{QT PE f } = χTFθ{PE f }. (52)

This gives

‖Fθ{QT PE f }‖Lr(R) =

( ∫
T

∣∣Fθ{PE f }(ξ)
∣∣r dξ

)1/r

. (53)

Using Hölder’s inequality we see that

|Fθ{PE f }| =
∣∣Aθ

∫
E

f (t)ei(t2+ξ2) cot θ
2 −itξ csc θ dt

∣∣
≤ |Aθ |

( ∫
E
| f (t)|s dt

)1/s( ∫
E

∣∣ei(t2+ξ2) cot θ
2 −itξ csc θ

∣∣r dt
)1/r

≤ |Aθ |
( ∫

R
| f (t)|s dt

)1/s( ∫
R

∣∣χE
∣∣r)1/r

= |Aθ |‖ f ‖Ls(R)|E|1/r. (54)

Including (54) into (53) results in

‖Fθ{QT PE f }‖Lr(R) ≤ |Aθ |‖ f ‖Ls(R)|T|1/r|E|1/r,

which finishes the proof of the theorem.

Theorem 6. Suppose that E and T are measurable subsets of R. Suppose that f ∈ Ls(R) with
1 ≤ s ≤ 2 such that 1

s +
1
r = 1. Then for any f is εE-localized to E in Ls(R)-norm and Fθ{ f } is

εT-localized to T in Lr(R)-norm we have

‖Fθ{ f }‖Lr(R) ≤

(
|Aθ ||T|1/r|E|1/r + εT | sin θ| 1s− 1

2 r1/2rs−1/2s
)
‖ f ‖Ls(R)

1− εE
. (55)

For r = 2 expression (55) becomes

|T||E||Aθ |2 ≥ (1− εE − εT | sin θ|)2. (56)
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Especially when r = 2 and θ = π
2 , formula (55) above will be reduced to

|T||E| ≥ 2π(1− εE − εT)
2. (57)

Proof. We apply (46), (49) and the triangle inequality to get

‖Fθ{ f }−Fθ{QEPT f }‖Lr(R)

≤ ‖Fθ{ f } − Fθ{QE f }‖Lr(R) + ‖Fθ{QE f } − Fθ{QEPT f }‖Lr(R)

= ‖Fθ{ f } − Fθ{QE f }‖Lr(R) + ‖Fθ{QE f −QEPT f }‖Lr(R)

≤ ‖Fθ{ f } − Fθ{QE f }‖Lr(R) + | sin θ|
1
s−

1
2 r1/2rs−1/2s‖ f − PT f ‖Ls(R)

≤ εE‖Fθ{ f }‖Ls(R) + εT | sin θ|
1
s−

1
2 r1/2rs−1/2s‖ f ‖Ls(R). (58)

Applying (51) and (58) results in

‖Fθ{ f }‖Lr(R)

≤ ‖Fθ{QEPT f ‖Lr(R) + ‖Fθ{ f } − Fθ{QEPT f }‖Lr(R)

≤ |Aθ |‖ f ‖Ls(R)|T|1/r|E|1/r + εE‖Fθ{ f }‖Ls(R) + εT | sin θ|
1
s−

1
2 r1/2rs−1/2s‖ f ‖Ls(R)

=

(
|Aθ ||T|1/r|E|1/r + εT | sin θ|

1
s−

1
2 r1/2rs−1/2s

)
‖ f ‖Ls(R) + εE‖Fθ{ f }‖Ls(R), (59)

which finishes the proof of the theorem.

Theorem 7 (FRFT Donoho-Strak’uncertainty Principle). Suppose that E and T are measurable
subsets of R. Suppose that f ∈ L1(R) ∩ Ls(R) with 1 ≤ s ≤ 2 such that 1

s +
1
r = 1. Then for any

f is εE-localized to E in L1(R)-norm and Fθ{ f } is εT-localized to T in Lr(R)-norm we have

‖Fθ{ f }‖Lr(R) ≤
|Aθ ||E|1/r|T|1/r‖ f ‖Ls(R)

(1− εE)(1− εT)
. (60)

In particular, for s = 2, Equation (60) becomes

(1− εE)(1− εT) ≤ |Aθ |
√
|E||T|. (61)

Proof. It follows with (46) that

‖Fθ{ f }‖Lr(R) ≤ ‖Fθ{ f } − Fθ{QT f }‖Lr(R) + ‖Fθ{QT f }‖Lr(R)

= ‖Fθ{ f } − Fθ{QT f }‖Lr(R) +

( ∫
T

∣∣Fθ{ f }(ξ)
∣∣r dξ

)1/r

≤ εT‖Fθ{ f }‖Lr(R) + |T|1/r‖Fθ{ f }‖L∞(R)

≤ εT‖Fθ{ f }‖Lr(R) + |T|1/r|Aθ |‖ f ‖L1(R). (62)

This will lead to

‖Fθ{ f }‖Lr(R) ≤
|Aθ ||T|1/r‖ f ‖L1(R)

1− εT
. (63)
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Now it can be immediately obtained that

‖ f ‖L1(R) ≤ ‖ f − PE f ‖L1(R) + ‖PE f ‖L1(R)

≤ εE‖ f ‖L1(R) +
∫

E
| f (t)| dt

≤ εE‖ f ‖L1(R) + |E|1/r‖ f ‖Ls(R), (64)

which gives

‖ f ‖L1(R) ≤
|E|1/r‖ f ‖Ls(R)

1− εE
. (65)

Inserting (65) into (63) ends the proof of the theorem.

Definition 5. For 1 ≤ r ≤ 2 we denote by Br(T) the set of the functions g ∈ Lr(R) that are
bandlinited to T. It means that every g ∈ Br(T) holds QT g = g. Moreover, it is said that f is
εT-bandlimited to T in Lr(R)-norm if there exists a function g ∈ Br(T) such that

‖ f − g‖Lr(R) ≤ εT‖ f ‖Lr(R). (66)

We present the following important results which follow immediately from the defini-
tion mentioned above.

Theorem 8. Suppose that E and T are measurable subsets of R. For all g ∈ Br(T) with 1 ≤ r ≤ 2
we have

‖PEg‖Lr(R) ≤ |E|
1
r |T|

1
r |Aθ || sin θ|

1
s−

1
2 r1/2rs−1/2s‖g‖Lr(R), (67)

whenever 1
r +

1
s = 1.

Proof. From Lemma 3 and the hypothesis of the theorem we deduce that

g(t) =
∫

T
Fθ{g}(ξ)Aθe−i(t2+ξ2) cot θ

2 +itξ csc θ dξ. (68)

By Hölder’s inequality together with Hausdorff-Young inequality for FRFT (32) we imme-
diately obtain

|g(t)| =
∣∣∣∣ ∫T
Fθ{g}(ξ)Aθe−i(t2+ξ2) cot θ

2 +itξ csc θ dξ

∣∣∣∣
≤
∫

T

∣∣∣∣Fθ{g}(ξ)Aθe−i(t2+ξ2) cot θ
2 +itξ csc θ

∣∣∣∣ dξ

= |T|
1
r |Aθ |‖Fθ{g}‖Ls(R)

≤ |T|
1
r |Aθ || sin θ|

1
s−

1
2 r1/2rs−1/2s‖g‖Lr(R). (69)

By virtue of relation (69) above it will lead to

‖PEg‖Lr(R) =

( ∫
E

∣∣g(t)∣∣r dt
) 1

r

≤ |E|
1
r |T|

1
r |Aθ || sin θ|

1
s−

1
2 r1/2rs−1/2s‖g‖Lr(R),

and the proof is complete.
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Theorem 9. Let E and T be measurable subsets of R and let f ∈ Lr(R) with 1 ≤ r ≤ 2 such that
1
r +

1
s = 1. If f is εE-bandlimited to E in Lr(R)-norm, then the following inequality holds:

‖PE f ‖Lr(R) ≤
(
|E|

1
r |T|

1
r |Aθ || sin θ|

1
s−

1
2 r1/2rs−1/2s(1 + εT) + εT

)
‖ f ‖Lr(R). (70)

Proof. Since the function f is εE-bandlimited to E in Lr(R)-norm, then there exists g ∈
Br(E) satisfying

‖PE f ‖Lr(R) ≤ ‖PEg‖Lr(R) + ‖PE( f − g)‖Lr(R)

= ‖PEg‖Lr(R) +

( ∫
E

∣∣( f − g)(t)
∣∣r dt

) 1
r

≤ ‖PEg‖Lr(R) +

( ∫
R

∣∣( f − g)(t)
∣∣r dt

) 1
r

≤ ‖PEg‖Lr(R) + εT‖ f ‖Lr(R). (71)

It is evident that

‖g‖Lr(R) ≤ (1 + εT)‖ f ‖Lr(R). (72)

By inserting (67) and (72) into (71) we find

‖PE f ‖Lr(R) ≤ |E|
1
r |T|

1
r |Aθ || sin θ|

1
s−

1
2 r1/2rs−1/2s‖g‖Lr(R) + εT‖ f ‖Lr(R)

≤
(
|E|

1
r |T|

1
r |Aθ || sin θ|

1
s−

1
2 r1/2rs−1/2s(1 + εT) + εT

)
‖ f ‖Lr(R),

and the proof is complete.

Theorem 10. Assume the same conditions as in Theorem 9. Under the additional condition that
the function f is εE-localized to E in Lr(R)-norm, then one has

1− εE − εT
1 + εT

≤ |E|
1
r |T|

1
r |Aθ || sin θ|

1
s−

1
2 r1/2rs−1/2s. (73)

Proof. With the help of Definition 4 we have

‖ f ‖Lr(R) ≤ ‖ f − PE f ‖Lr(R) + ‖PE f ‖Lr(R)

≤ εE‖ f ‖Lr(R) + ‖PE f ‖Lr(R). (74)

Assertion (74) is equivalent to

‖ f ‖Lr(R) ≤
‖PE f ‖Lr(R)

1− εE
. (75)

Substituting (75) into (70) yields

‖PE f ‖Lr(R) ≤
((
|E|

1
r |T|

1
r |Aθ || sin θ|

1
s−

1
2 r1/2rs−1/2s)(1 + εT) + εT

)‖PE f ‖Lr(R)
1− εE

, (76)

as required.
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6. Inequalities for Shannon Entropy

It is the purpose of this part to develop an analogue of Shannon entropy for the FRFT.
To facilitate the narrative, we first introduce the Reńyi entropy, which is formulated in the
following form:

Definition 6 ([42]). The entropy of a probability density function ρ on R is expressed by

Hα(ρ) =
1

1− α
ln
( ∫

R

[
ρ(t)

]α dt
)

, α ≥ 1. (77)

For α→ 1, the Reńyi entropy will lead to the Shannon entropy, that is,

E(ρ) = −
∫
R

ρ(t) ln(ρ(t)) dt. (78)

The above definition leads us to obtain the following important results.

Theorem 11. Let 1
α + 1

γ = 2 and f ∈ L2(R), we have

2Hα(| f (t)|2) + 2Hγ

(∣∣Fθ{ f }(ξ))
∣∣2) ≥ 2 ln | sin θ|+ 1

γ− 1
ln(r) +

1
α− 1

ln(s), (79)

where 1
s +

1
r = 1.

Proof. In view of (32) we get

( ∫
R

∣∣Fθ{ f }(ξ)
∣∣s dξ

) 1
s

≤ | sin θ|
1
s−

1
2 r1/2rs−1/2s

( ∫
R
| f (t)|r dt

) 1
r

. (80)

Now setting s = 2α and r = 2γ, relation (80) is reduced to

( ∫
R

∣∣Fθ{ f }(ξ)
∣∣2α dξ

) 1
2α

≤ | sin θ|
γ−1
2γ r

1
γ s−

1
α

( ∫
R
| f (t)|2γ dt

) 1
2γ

. (81)

This means that( ∫
R

∣∣Fθ{ f }(ξ)
∣∣2α dξ

) 1
1−α

≤ | sin θ|r
1
γ s−

1
α

( ∫
R
| f (t)|2γ dt

) 1
γ−1

. (82)

Applying 1−α
α = γ−1

γ yields

( ∫
R

∣∣Fθ{ f }(ξ)
∣∣2α dξ

) 1
1−α

≤ | sin θ|r
2

γ−1 s
2

α−1

( ∫
R
| f (t)|2γ dt

) 1
γ−1

. (83)

Hence, ( ∫
R

∣∣Fθ{ f }(ξ)
∣∣2α dξ

) 1
1−α
( ∫

R
| f (t)|2γ dt

) 1
1−γ

≥ | sin θ|r
2

γ−1 s
2

α−1 . (84)

Taking the logarithm of both sides of (84) above results in

1
1− α

ln
( ∫

R

∣∣Fθ{ f }(ξ)
∣∣2α dξ

)
+

1
1− γ

ln
( ∫

R
| f (t)|2γ dt

)
≥ ln | sin θ|+ 2

γ− 1
ln(r) +

2
α− 1

ln(s). (85)
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Or, equivalently,

Hα(| f (t)|2) +Hγ

(∣∣Fθ{ f }(ξ))
∣∣2) ≥ ln | sin θ|+ 2

γ− 1
ln(r) +

2
α− 1

ln(s), (86)

and the proof is complete.

Corollary 2. For α→ 1 and γ→ 1 one has

E(| f (t)|2) +E
(∣∣Fθ{ f }(ξ))

∣∣2) ≥ ln | sin θ|, (87)

which is a Shannon entropy related to the FRFT.

7. Conclusions

In the research study, we have introduced the definition of the fractional Fourier trans-
form. We have provided its relation to the Fourier transform and developed this relation to
explore the main properties concerning this transform. Various relations associated with
the fractional Fourier transform are studied in detail. We are in the direction to apply the
proposed method in image enlargement [43,44] that have many applications especially in
medical image zooming and land slides detection.
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